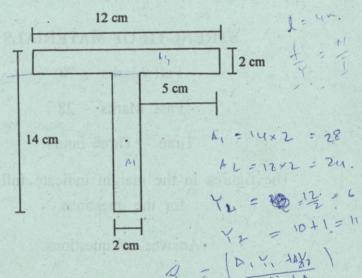
CT-303/SOM/3rd Sem/2016/N

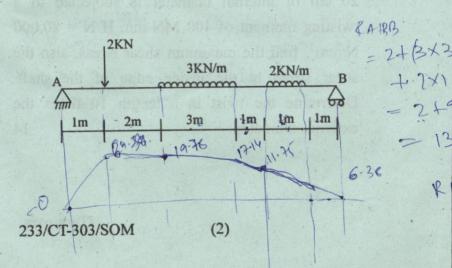
STRENGTH OF MATERIALS

Full Marks - 70

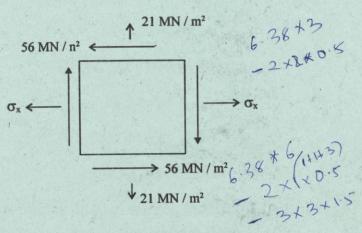
Pass Marks - 28


Time - Three hours

The figures in the margin indicate full marks for the questions.


Answer all questions.

A hollow shaft of 40 cm external diameter and 20 cm of internal diameter is subjected to a twisting moment of 400 MN-mn. If N = 80,000 N/mm², find the maximum shear stress, also the shear stress at the inside edge of the shaft. Determine the twist in a length 10 times the external diameter.


2. The T-section is a simply supported beam over a span of 4 metres. It carries a uniformly distributed load of 8000 N/m over its entire span. Calculate the maximum compressive and tensile stress in the section.

3. Draw bending moment diagram for the figure.

If the minimum principal stress is -7 MN/m², find $\sigma_{\rm X}$ and the angle which the principal stress axes make with X-Y axes: 14

- Write notes of the following terms:
 - 5 (a) Stress, strain and their types.
 - 5 (b) Stress-strain diagram for mild steel.
 - (c) Hooke's law, Poisson's ratio, Young's modulus, Bulk modulus.

| lus, Bulk modulus.
|
$$6.38 \times 8 = 51.4 - 2 \times 0.7 (2434 \times 4141)$$
 | 4
| $-2 \times (3+2) \times 0.5$
| $-2 \times (3+2) \times 0.5$
| $+2$
| $+2$
| $+2$
| $+2 \times (2\times 1) \times 2 \times (2\times 1) \times (2\times$

50(G) 233/CT-303/SOM (LT) (3)

6.38x1 - 7x1 x D.5 =