Total number of printed pages-6

53 (CS 812) RBTC

2018

ROBOTICS

Paper : CS 812

Full Marks : 100

Time : Three hours

The figures in the margin indicate full marks for the questions.

Answer any five questions out of six.

- 1. (a) Define anatomy of robot and also draw a diagram of robot manipulator which consist links and joints. 6
 - (b) Write down the manipulator joints with their notations and diagrams. Sketch the following manipulator configurations :
 - (i) LOO

(ii) TRR

(iii) TRL

Contd.

Describe the wrist configurations with a diagram. Mention the types of endeffector. 6

Or

Explain reinforcement learning in hybrid architecture with a diagram.

2. (a) Describe 2-DOF robot manipulator (R-R) and also define the position of end arm in the world space (forward) transformation using the links L_A & L_B . Calculate the reverse transformation (θ_A and θ_B) from the figure given below : 14

2

53 (CS 812) RBTC/G

(c)

6

(b) Two points $a_{uvw} = (8,6,4)^T$ and $b_{uvw} = (9,3,5)^T$ are to be translated a distance +6 unit along OX-axis & -5 unit along OZ-axis. Using the appropriate homogeneous transformation matrix, determine the new points a_{xyz} and b_{xyz} . (Hint : Forward transformation i.e. coordinates x & y) 6

3. (a) Derive the joint angles using reverse transformation of the 4-DOF arm in three dimensional space. Information related to angles are given below here

At Joint = Type T : (Rotation about the z-axis) ; base rotation, θ

At Joint 2 = Type R : (Rotation about an axis, i.e. perpendicular to z-axis) ; elevation angle, ϕ

At Joint 3 = Type L (Linear) : (Sliding over a certain range) ; Extension L, represents a combination of links 2 and 3.

At Joint 4 = Type R : (Rotation about an axis, i.e. parallel to the joint 2 axis); angle makes with x-y plane called pitch angle ψ . 20

53 (CS 812) RBTC/G

Contd.

3

- 4. (a) For the vector, V = 15i + 30j + 35k, rotate by an angle of 45° about the *x*-axis. Derive the rotation transformation.
 - (b) Explain the Kinematics Function of link. Describe the method to measure Link Length and Link twist.
 - (c) Calculate this T matrix for the given parameters values in table '1' using D-H transformation.

6+6+8=20

Joint i	α _i	ai	D_i	θ_i
1	0	a ₀	0	θ_0
2	-60	a ₁	0	θ_1
3	0	0	d_1	θ_2
4	45	0	d_2	θ_3

- 5. (a) A robot performs a loading and unloading operation for a machine tool as follows :
 - (i) A Robot pick up part from conveyor and loads into machine (Time=9.5 sec)
 - (ii) Machining cycle in automatic manner with time = 42.0 sec

- (iii) Robot reclaim part from machine and deposits to outgoing conveyor with time =5.5sec
- (iv) Finally Robot moves back to pickup position with in time = 1.8sec

Every 20 work parts, the cutting tools in the machine are changed which takes 3.5 minutes. The uptime efficiency of the robot is 97%; and the uptime efficiency of the machine tool is 98% which rarely overlap. Determine the hourly production rate. 10

 (b) Write down the five steps for developing the program in robot level language with a diagram.
10

OR

Explain the steps in details for object recognition and describe the challenges in object recognition. 10

- 6. (a) Write down the short notes on the following : (any four) 4×2=8
 - (i) Sensor fashion
 - (ii) Convolution

53 (CS 812) RBTC/G

Contd.

- (iii) Denavit-Hartenberg (D-H) representation
 - (iv) Four stages of object representation
 - (v) ERT.
- (b) Differentiate between the following : (any three) 3×4=12
 - (i) Grayscale erosion Vs Grayscale dilation
 - (ii) Passive sensor Vs Logical sensor
- (iii) Revolute joint Vs Prismatic joint

tal Write down

(iv) Top surface Vs. Umbra.

et notes on the