Total number of printed pages-3

53 (CS 714) PRCP

2016

PARALLEL COMPUTING

Paper : CS 714

Full Marks : 100

Time : Three hours

The figures in the margin indicate full marks for the questions.

Answer any five questions.

- 1. (a) With clear diagram discuss about PRAM model.
 - (b) With diagram discuss about UMA and NUMA. 10+10
- 2. (a) Write down PRAM algorithm for computing prefix sum of an array.
 - (b) Apply your algorithm for the array given below. (Clearly mention each step)

A[1]	A[2]	A[3]	<i>A</i> [4]	A[5]	A[6]	A[7]	A[8]
2	4	1	5	6	3	7	8

5 + 15

Contd.

- 3. (a) Write a PRAM algorithm to merge two sorted array into a single sorted array.
 - (b) Apply your algorithm for the following data.

A[1]	A[2]	A[3]	<i>A</i> [4]
10	14	18	20
A[5]	A[6]	A[7]	A[8]
11	13	15	19

5 + 15

- 4. (a) Compute the diameter and bisection width for the following network :
 - (i) 2D Mesh without wrap around
 - (ii) Binary tree
 - (iii) Hypercube
 - (iv) Cube Connected Cycles.
 - (b) Prove the following :
 - (i) A binomial tree of height greater than 4 cannot be embedded in a 2D mesh without increasing the dialation 1.

53 (CS 714) PRCP/G

(ii) A dialation-1 embedding of a complete binary tree of height ninto a hypercube of dimension n+1does not exist if n > 1.

4×3+4×2

- 5. (a) With an example discuss about different load balancing algorithm.
 - (b) With an example discuss about Coffman-Graham scheduling algorithm. 10+10
- 6. Consider the following data : 20

10 12	8 17	14	13	15	2
-------	------	----	----	----	---

Design & apply bitonic merge-sort (clearly mention each step).

- 7. Write briefly on :
 - (a) Shuffle-exchange network
 - (b) Pyramid network
 - (c) SIMD
 - (d) MIMD.

53 (CS 714) PRCP/G

3

100

4×5