(c) Consider the 102 ing grammar

COMPILER DESIGN

Paper: CS 601

Full Marks: 100

Time: Three hours

The figures in the margin indicate full marks for the questions.

Answer any five questions.

1. (a) Consider the following instruction a = b + c/d - c

a = b + c/d - e

With a clear diagram discuss the outputs of the different phases of compiler. 15

- (b) Discuss the differences between syntax and semantics. 5
- 2. (a) What is left recursion? With an example discuss the procedure to remove left recursion from a grammar. 2+8

- (b) With an example discuss how to remove left factoring from a grammar.
- (c) Consider the following grammar

$$E \to E + T \mid E - T \mid T$$
$$T \to id$$

$$T \rightarrow id$$

check whether the grammar is ambiguous or not.

- (a) Construct an NFA for $(a|b)^*abb$.
 - (b) Convert the above NFA to its equivalent DFA. 10
 - Minimize the states of the above mentioned DFA.
- (a) Write down the rules for computing FIRST and FOLLOW for a grammar. 5
- (b) Consider the augmented grammar $E' \rightarrow E$ $E \to E + T | T$ element $T \to T * F | F$ $F \rightarrow (E) \mid id$ Construct the LR(0) items for the above

mentioned grammar. 15 5. Consider the following augmented grammar

$$S' \rightarrow S$$

$$S \rightarrow CC$$

$$C \rightarrow cC \mid d$$

- (a) Construct the set of LR(1) items. 10
- (b) Design a canonical LR(1) parsing table for the above problem.
- 6. (a) Construct the DAG for the following expression

$$x+((x-y)*Z)+(x-y)+(x-z)$$
 5

- (b) Create three address code for the above mentioned problem.
- (c) Briefly discuss about quadruples and triples. (2.5+2.5)
- (d) Write a lex program to identify the strings accepted by the grammar $(a|b)^*c$.

- (a) Consider the following intermediate code 7.
 - 1) i = 1
 - 2) j = 1
 - 3) t1 = 10 * i
 - 4) t2 = t1 + i
 - 5) t3 = 8 * t2
 - 6) t4 = t3 - 88
- $a[t4] = 0 \cdot 0$
 - 8) j = j + 1 maldarq avoda adi
 - 9) if $j \le 100 \text{ goto } (3)$
- (a) Construct the DAI+i=i (01 following
 - 11) if i <= 100 goto (2)
 - 12) i = 1
 - 13) t5 = i 1
- evode and 14) t6 = 88 * t5 by some energy of the
 - 15) a[t6] = 1.0

EXECUTE OF THE STA

- i = i + 1
- 17) if $i \le 100$ goto (13)

Find out the basic blocks and create the flow graph for the above problem. 7 + 3

Briefly discuss about any one code (b) optimization technique. 10