Total number of printed pages-3

53 (CS 503) DAAL

2018

DESIGN AND ANALYSIS OF ALGORITHMS

Paper : CS 503

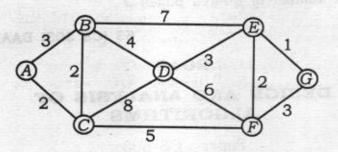
Full Marks : 100

Time : Three hours

The figures in the margin indicate full marks for the questions.

Answer all questions.

- 1. (a) With examples define the terms -
 - (i) Upper bound
 - (ii) Lower bound
 - (iii) Strictly bound.


3+3+4

(b) Consider the following recursion : T(n)=T(n/2)+T(n/2)+n.

Compute the time complexity using the strictly bound. 10

Contd.

2. Consider the following graph :

- (a) Use Prim's algorithm to find out the minimum spanning tree.
- (b) Compute BFS and DFS of the graph. 10+5+5
- 3. (a) Write a recursive function to compute Fibonacci numbers.
 - (b) Draw the recursion tree for input6. [fib (6)].
 - (c) Use dynamic programming to compute Fibonacci numbers.
 - (d) Compare the time complexity with previous approach.

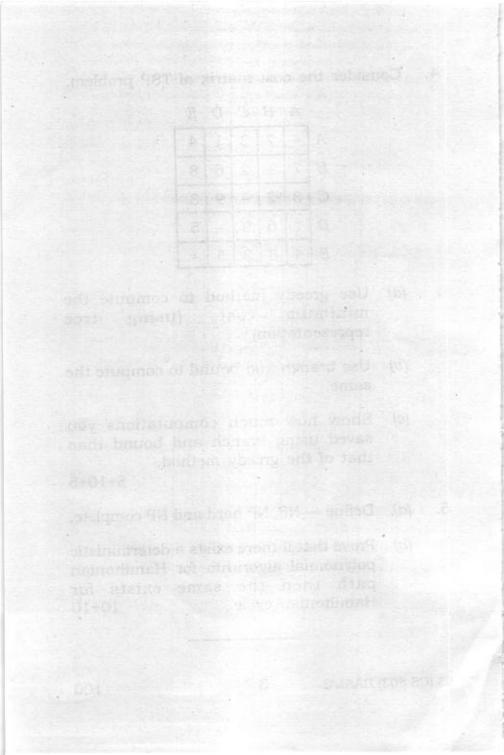
5+5+5+5

53 (CS 503) DAAL/G

4. Consider the cost matrix of TSP problem.

	A	B	С	D	E
A	-	7	3	1	4
B	7	-	2	6	8
C	3	2	-	9	3
D	1	6	9	-	5
E	4	8	3	5	-

- (a) Use greedy method to compute the minimum cost. (using tree representation)
- (b) Use branch and bound to compute the same.
- (c) Show how much computations you saved using branch and bound than that of the greedy method.


5+10+5

- 5. (a) Define NP, NP hard and NP complete.
 - (b) Prove that if there exists a deterministic polynomial algorithm for Hamiltonian path then the same exists for Hamiltonian cycle. 10+10

53 (CS 503) DAAL/G

3

100

