Total number of printed pages-5

53 (CS 303) OPSY

2014

DESIGN OPERATING SYSTEM

Paper : CS 303

Full Marks : 100 Pass Marks : 30

Time : Three hours

The figures in the margin indicate full marks for the questions.

Answer any five questions out of seven.

- 1. (a) What do you mean by an operating system? Explain the various services of an operating system. 2+8=10
 - (b) Discuss any two types of operating system with examples. 4
 - (c) Define the following : $3 \times 2=6$
 - (i) System call and approve (iii)
 - (ii) Virtual machine
 - (iii) Command interpreter.

Contd.

- 2. (a) What do you mean by a process ? Describe the different states of a process. 2+6=8
 - (b) What are the major components of a PCB? Discuss in brief. 6
 - (c) Define context switch. Explain how context switching is done with the help of a diagram. 2+4=6

3. (a) Consider the following set of processes -

Process	Arrival time (ms)	Burst time (ms)	Priority
P ₁	0	10	3
P ₂	1	1	1
P ₃ .	2	2	`4
P4 Derego	ne v3neam	What db you	5
P ₅ lo 20	ariou Aservia	explait the v	2

6

Using priority scheduling (preemptive and non-preemptive) technique, draw the Gantt chart and find out the following :

(i) average waiting time

(ii) average response time

(iii) average turn around time.

53 (CS 303) OPSY/G

- (b) What do you mean by starvation and aging ? 2+2=4
- (c) What do you mean by process synchronization? Discuss the producerconsumer problem for synchronizing cooperating processes. 2+8=10
- 4. *(a)* What do you mean by critical section ? How binary semaphores are used to solve the critical section problem ? 2+6=8
- (b) Define a deadlock.
- (c) Consider a system with five processes P_0 , P_1 , P_2 , P_3 , P_4 and three resource types A, B, and C. Resource type A has 10 instances, B has 5 instances and C has 7 instances. Lets consider that the following snapshot of the system has been taken at time T_0 .

Processes	Allocation	Max	Available
	ABC	ABC	ABC
Po	010	753	332
P ₁	200	322	
P ₂	302	902	
P ₃	211	222	
P ₄	002	433	(4)

53 (CS 303) OPSY/G

3

Contd.

Using Banker's algorithm for deadlock avoidance, answer the following :

- (i) What is the content of matrix Need?
- (ii) Is the system in a safe state?
- (*iii*) If a request for resources (1, 0, 2)arrives from process P₁, can the request be granted to the process ? 10
- 5. (a) Consider a page size of 4 bytes and a physical memory of 32 bytes. Using paging scheme, show how the logical memory can be mapped into physical memory. Assume that the logical memory is 16 bytes. 5
 - (b) Consider the following page reference string: 9

7 0' 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

How many page faults would occur for the following replacement algorithm ? (Assume that we have 3 frames and all the frames are initially empty)

(i) FIFO

(ii) Optimal

(iii) LRU

53 (CS 303) OPSY/G

(c) Define the following :

3+3=6

- (i) Demand paging
- (ii) Virtual memory.
- 6. (a) Define a file. Discuss any three operations that can be performed on a file. 2+6=8
 - (b) Discuss the sequential and direct access methods for accessing a file. 3+3=6
 - (c) What do you mean by spooling ? How is it different from buffering ?3+3=6
- 7. Write short notes on :

4×5=20

- (i) Paging
- (ii) Segmentation
- (iii) Interrupt
- (iv) Direct memory access (DMA).

53 (CS 303) OPSY/G