Total No. of printed pages = 6 Co-505/OS/5th Sem/Comp/2017/M

OPERATING SYSTEM

Full Marks – 70

Pass Marks – 28

Time - Three hours

The figures in the margin indicate full marks for the questions.

Answer question No.1 and any *four* questions from the rest.

1. (a) State true or false : $1 \times 5 = 5$

- (i) A CPU bound process generates I/O request frequently.
- (ii) The FCFS scheduling algorithm is nonpreemptive.
- (iii) In batch system, jobs are executed in a sequential manner.
 - (iv) Segmentation permits physical address space of process to be non-contiguous.

[Turn over

- (v) System calls provide an interface between processes and operating system.
 - (b) Fill up the blanks : $1 \times 5 = 5$
 - (i) A _____ is a program in execution.
 - (ii) If there is no _____ in the Resource Allocation Graphs, it indicates that no deadlock exists.
 - (iii) Virtual memory technique is implemented by _____ paging.
 - (iv) Paging memory management scheme suffers from fragmentation.
- (v) Critical section refers to the code segment of a process where it accesses a _____ resource.
- 2. (a) Define process. What is process state ? Explain with the help of a diagram. 7
- (b) Write an algorithm to solve critical section problem for 2 processes. Prove that the algorithm satisfies all three requirements for the critical section problem.

355/Co-505/OS

- 3. (a) With reference to the following set of processes, determine Average Waiting Time and Average Turnaround Time, using the following scheduling algorithms : 10
 - (i) FCFS
 - (ii) SJF moto that ages a native

(iii) Priority based (Preemptive)

(iv) Round Robin.

Make use of Gantt Charts. Lower number means higher priority i.e. process with priority 1 has higher priority than process with priority 2. In case of tie, use FCFS to break the tie. Time slice for Round Robin scheduling is 4 ms.

Process	Arrival Time(n	ns)	Next CPU	Burst(ms)	Priority	
P1	00		14	11	07	
P2	01		0'	79	01	
P3	03		02	2	03	
P4	05		0	8	02	

355/Co-505/OS

(3)

[Turn over

- (b) What are the performance criteria for CPU scheduling algorithms. 5
- 4. (a) Under what circumstances do page faults occur ? Describe with the help of diagram the actions taken by the operating system when a page fault occurs.
 - (b) Write the four necessary conditions that cause deadlock in a system. 4
- 5. (a) Consider the following snap-shot of a system : 10

Current state : en a constant

anti Charts, Lower number

	Process	Allocated			
		R1	R2	R3	R4
	P1	0	0	1	2
70530	P2	2	0	0	0
05/1000	P3	0	0	3	4
20 Ligari	P4	2	3	5	4
1030	P5	0	3	3	2
355/Co-505	5/OS	(4)			800(W

Max .			E.C.m	Available				
R1	R2	R3	R4	R1	R2	R3	R4	
0	0	1	2	2	1	0	0	
2	7	5	0			neta.c		
6	6	5	6				(11)	
4	3	5	6			Interp		
0	6	5	2				(iv).	

(i) Compute NEED Matrix.

(ii) Is the system in safe state ? Justify.

(iii) Is the system deadlocked ? Justify the answer.

- (iv) Can a request (0, 1, 0, 0) from P3 be safely granted immediately ? Justify the answer. Show the system state after grant of request.
- (b) Explain the SCAN scheduling algorithm considering a disk queue with requests for I/O to blocks on cylinders : 98, 183, 37, 122, 14, 124, 65, 67
- 6. (a) Discuss the contiguous allocation method of allocating disk space stating its advantages and disadvantages.

(b) Explain the processor pool model of
Distributed Operating System.

355/Co-505/OS

(5)

[Turn over

1

7. Write short notes on any three :

5×3=15

- (i) DMA
- (ii) Belady's Anomaly
- (iii) Semaphore
- (iv) Monitor
- (v) Interprocess Communication

granted immediately 7 Joshiy the meriver

1/0. to blocks adaptinders : 98, 183, 37, 122,

(vi) Time Sharing System.

355/Co-505/OS

800(W)