Total No. of printed pages = 5

Co-401/DSUC/4th Sem/Comp/2017/M

DATA STRUCTURE USING C

Full Marks - 70

Pass Marks - 28

Time - Three hours

The figures in the margin indicate full marks for the questions.

Answer question No.1 and any four questions from the rest.

1. (a) State true or false:

1×5=5

- (i) POP operation in a stack can cause overflow.
- (ii) A tree is also a graph.
- (iii) In postorder traversal of tree, the root node is visited at last.
- (iv) The name of an array with no subscript always refers to the address of the initial array element.

[Turn over

(v) Overflow will occur with linked list when AVAIL = NULL and there is an insertion.
Fill up the blanks: 1×5=5
(i) In linked list linear order is given by means of
(ii) Recursion uses as an internal data structure.
(iii) The maximum level of any leaf in the tree is also known as of the tree.
(iv) Space complexity of an algorithm indicates its requirement.
(v) A graph may be represented using
Write an algorithm for the Quicksort and find its complexity for the worst case.
What is an array? Write algorithms for inserting and deleting elements in the array.

2. (a)

(b)

(b)

2+5=7

- 3. (a) Consider the algebraic expression $E = (2x+y)(5a-b)^3$ 3+3=6
 - (i) Draw the tree T which corresponds to the expression E.
 - (ii) Find the prefix polish expression P which is equivalent to E and find the preorder of T.
 - (b) Consider the following arithmetic expression P, written in postfix notation:

 4 P: 12, 7, 3, -, /, 2, 1, 5, +, *, +

 Translate P into its equivalent infix expression and evaluate it.
 - (c) Write the algorithm for Linear Search and find its complexity.
 - 4. (a) Suppose LIST be a linked list in memory.

 Write an algorithm which deletes the last node from LIST.
 - (b) A binary tree T has 9 nodes. The inorder and preorder traversal of T yield the following sequence of nodes:

 Inorder: E A C K F H D B G Preorder: F A E K C D H G B Draw the tree.

5. (a) Let S and T be character variables such that

S = 'JOHN PAUL JONES'

T = 'A THING OF BEAUTY IS A JOY FOREVER'

Determine the following:

7

- (i) SUBSTRING(S,4,8) and SUBSTRING (T,10,5)
- (ii) INDEX(S, 'JO')
- (iii) SUBSTRING(T,28,3) // 'GIVEN'
- (iv) INSERT(S,11,'AND')
- (v) DELETE(S,6,5)
- (vi) REPLACE(S, 'PAUL', 'DAVID')
- (b) State Tower of Hanoi problem. Write an algorithm that gives a recursive solution to the Towers of Hanoi problem for n disks. Illustrate it for n = 4 (i.e. 4 disk) 2+3+3=8
- 6. (a) Suppose Q is an arithmetic expression written in infix notation. Write an algorithm to find the equivalent postfix expression P.
 - (b) Write algorithms for BFS and DFS on a graph.

- 7. Write short notes on any three: $5\times 3=15$
 - (i) Pointers
 - (ii) Two-way List
 - (iii) Algorithm Complexity
 - (iv) Priority Queue
 - (v) Heap
 - (vi) Radix Sort.