Total number of printed pages-3

53 (CE 813) FELM

2018

FINITE ELEMENT METHODS IN ENGINEERING

Paper : CE 813

Full Marks : 100

Time : Three hours

The figures in the margin indicate full marks for the questions.

Answer any five questions out of seven.

1. (a) Define Stiffness Matrix. Determine the stiffness matrix of bar element.

4+6=10

- (b) Explain in detail the steps involved in the solution of non-linear finite element problem.
 10
- (a) What do you understand by shape function? Determine the shape function of a 4-noded rectangular element. 4+6=10

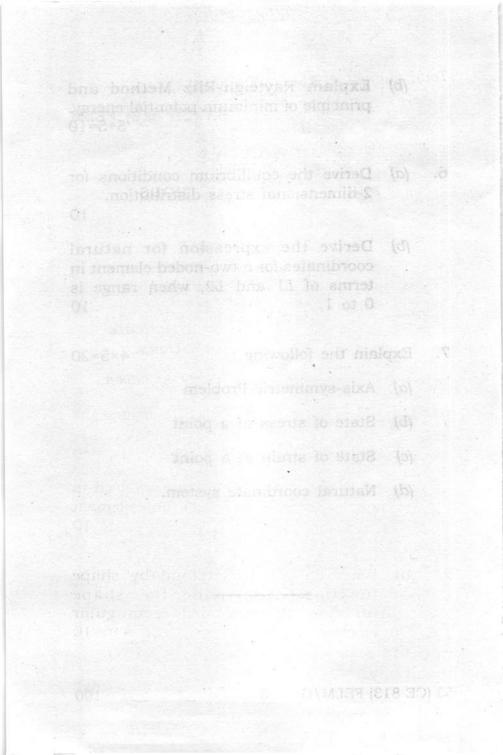
Contd.

- (b) Draw the Pascals triangle and write the displacement equations of 4-noded and 8-noded element.
 4+3+3=10
- 3. (a) Define with suitable figures, Plane stress and Plane strain problems. 5+5=10
 - (b) Explain Isoparametric element concept.
 Also state the basic theorem related to isoparametric concept. 4+6=10
- 4. (a) Using Lagrange's interpolation function, determine shape function for 8-noded two-dimensional rectangular element. 10
 - (b) Determine the shape function of a 3-dimensional brick element. 10
- 5. (a) Integrate the following oner 'l'.

(i)
$$\int_{0}^{l} L_{1}^{2} L_{2} dx$$

(ii)
$$\int_{0}^{l} L_{1} L_{2} dx$$

5+5=10


53 (CE 813) FELM/G 2

(b) Explain Rayleigh-Ritz Method and principle of minimum potential energy. 5+5=10

6. (a) Derive the equilibrium conditions for 2-dimensional stress distribution.

10

- (b) Derive the expression for natural coordinates for a two-noded element in terms of L1 and L2, when range is 0 to 1.
- 7. Explain the following : 4×5=20
 - (a) Axis-symmetric Problem
 - (b) State of stress at a point
 - (c) State of strain at a point
 - (d) Natural coordinate system.

