Total number of printed pages-3

53 (CE 714) OCEL

2019

OPEN CHANNEL FLOW

Paper: CE 714

Full Marks: 100

Time: Three hours

The figures in the margin indicate full marks for the questions.

Answer any five questions.

1. Write short notes on:

5×4=20

- (a) Types of channels
- (b) Classification of open-channel flow
- (c) Types of hydraulic jump
- (d) Classification of flow profiles.

Contd.

three mild slopes which could be described as mild, steeper mild and milder. The three slopes are in series. The last slope has a sluice gate in the middle of the reach and the downstream end of the channel has a free overfall.

2

- (b) The velocity distribution in a rectangular channel of width B and depth of flow y₀ was approximated as v = k₁√y in which k₁ is constant.
 Calculate average velocity for the crosssection and correction coefficients α and β.
- a flow of $3.6m^3/s$ with a velocity of 0.9m/s. If a sudden release of additional flow at the upstream end of the channel causes the depth to rise by 50%, determine the absolute velocity of the resulting surge and the net flow rate.

ω

(b) Derive the momentum equation of St. Venant Equation. 10

- 4. (a) Derive the differential equation of gradually varied flow.
- (b) Explain the depth of flow for the channel transitions (a) with hump(b) with increased width of channel.
- (a) Calculate the bottom width of a channel with discharge of 15m³/s and critical depth of 1·2m. (a) Rectangular (b) Trapezoidal, m = 1·5.

Ċ

(b) A 2.5m wide rectangular channel has a specific energy of 1.5m and discharge of 6.48m³/s. Calculate alternate depth and corresponding Froude Numbers.

45 m

For hydraulic jump in rectangular channel, derive the equation for sequent depth ratio and energy loss.