Total number of printed pages-6

53 (CE 604) FDEN

2018

FOUNDATION ENGINEERING

Paper : CE 604

Full Marks : 100

Time : Three hours

The figures in the margin indicate full marks for the questions.

Answer any five questions out of six.

- 1. (a) What are the different methods of soil exploration?
 - (b) What are the corrections required for the N-values obtained in the field? 6

Contd.

- (c) Design a strip footing to carry a load of 750kN/m at a depth of 1.6m in a $C-\phi$ soil having a $\gamma = 18kN/m^3$ and shear strength parameters as $c = 20kN/m^2$ and $\phi = 25^\circ$. Determine width of footing, using a FOS 3 against shear failure. Use Terzaghi's equation for $\phi = 25^\circ$, $N_c = 25 \cdot 1$, $N_q = 12 \cdot 7$, $N_\gamma = 9 \cdot 7$.
- 2. (a) What do you mean by load carrying capacity of piles? How load carrying capacity of piles can be determined? 2+8=10
 - (b) The following data was obtained from a plate load test carried out on a 60cm square test plate at a depth of 2m below the ground surface on the sandy soil which extends upto a great depth. Determine the allowable load on $2m \times 2m$ footing with its base at a depth of 2m below ground surface, the

53 (CE 604) FDEN/G

permissiblesettlementforthefoundation40mm,FOS '3' ' γ ' attestpit = $2t/m^3$.10Load intensity (t/m^2) :510152025303540Settlement (mm):247.51116.323.53443

TERZAGHI'S BEARING CAPACITY FACTORS FOR TRANSITIONAL STATE.

53 (CE 604) FDEN/G

3

Contd.

- 3. (a) What are the basic requirements of a foundation? 5
 - (b) A strip footing 4m wide carries a load intensity of $800kN/m^2$ at a depth of 2m in sand. The saturated unit weight of sand is $19.5kN/m^3$ and unit weight above water table is $16.8kN/m^3$. The shear strength parameter are c = 0 and $\phi = 35^\circ$. Determine the factor of safety with respect to shear failure for the following cases of location of water table —
 - (a) water table is 6m below GL
 - (b) water table is 2m below GL
 - (c) water table is 3m below GL
 - (d) water table is 1m below GL
 - (e) water table at GL.

4

Use Terzaghi's equation, for $\phi = 35^{\circ}$, $N_q = 41.4$ and $N_{\gamma} = 42.4$.

15

53 (CE 604) FDEN/G

(a) Describe negative skin friction. How is it calculated for single pile and group pile? What method can be adopted for mitigating negative skin friction?
3+4+3=10

(b) A square pile group of 9 piles passes through a recently filled up material of 4.5m depth. The diameter of the pile is 30cm and pile spacing is 90cm centre to centre. If UCS of the cohesive material is $60kN/m^2$ and $\gamma = 15kN/m^3$, compute the negative skin friction of the pile group. 10

- 5. (a) What are the assumptions made by Boussinesq for the Boussinesq Equation? Deduce the equations of stress due to a concentrated load acting on ground surface. 3+7=10
 - (b) Explain the methods of ground improvement techniques by chemical stabilisation.
 - (c) Write a note on grouting technique.

5

5

53 (CE 604) FDEN/G

Contd.

- 6. (a) A concentrated point load of 200kN acts at the ground surface. Find the intensity of vertical pressure at a depth of 10m below GL, and situated on the axis of the loading. What will be the vertical pressure at a point at a depth of 5m and at a distance of 2m from the axis of loading?
 - (b) What are the different types of samplers? How a sampler is designed? Explain the features of sampler.

6+6=12