53 (CE 604) FDEN

2017

FOUNDATION ENGINEERING

Full Marks: 100

Time: Three hours

The figures in the margin indicate full marks for the questions.

Answer any five questions.

- 1. (a) Explain about the load carrying capacity of piles. How load carrying capacity of pile can be determined?

 Describe any one method or formulae of determining load carrying capacity of pile.

 3+2+5=10
- (b) A foundation 2.0m square is installed 1.2m below the surface of a uniform sandy gravel having a density of $19.2 \, kN/m^3$, about the water and a submerged density of $10.1 \, kN/m^3$. The strength parameters with respect to

effective stress are c' = 0 and $\phi' = 30^{\circ}$. Find the gross ultimate bearing capacity for the following conditions —

- (i) Water table is well below the base of foundation.
- (ii) Water table rises to the base of foundation.
- (iii) Water table rises to ground level. For, $\phi' = 30^{\circ}$, Nq = 22 and Nr = 20
- 2. (a) What are the general steps to be followed by concerned engineer in choosing the type of foundation? 6
- (b) Design a friction pile group to carry a load of 3000kN including weight of pile cap at a site where the soil is uniform clay to a depth of 20m, underlain by rock. Average UCS of clay is $70 \, kN/m^2$. The clay may be assumed to be of normal sensitivity and normally loaded with liquid limit 60%. A factor of safety of 3 is required against shear failure.

14

- 3. (a) Explain Meyarhof's theory and what are the assumptions of Meyarhof's theory.

 Differentiate between Terzaghi's theory and Meyarhof's theory.

 5+5=10
- (b) A concentrated load of 40kN acts on the surface of a soil. Determine the vertical stress increment at points directly beneath the load upto a depth of 10m and draw a plot.
- 4. (a) Describe the criteria for selection of the depth of well foundations.
- (b) A plate load test was conducted on a uniform deposit of sand and the following data are obtained.

Pressure (kN/m^2) :	50	100	200	300	400	500	600
Settlement (mm):	1.5	2	4	7.5	12:5	20	40

The size of the plate was $750mm \times 750mm$ and that of the pit $3.75m \times 3.75m \times 1.5m$.

(i) Plot the pressure settlement curve and determine the failure stress.

(ii) A square footing $2m \times 2m$ is to be founded at 1.5m depth in this soil.

Assuming the FOS against shear failure as 3 and maximum permissible settlement as 40mm, determine the allowable bearing pressure.

(iii) Design of footing for a load 2000kN if the water table at great depth.

Given,

φ	N_c	N_q	N_r
35°	57.8	41.4	42.4
40°	95.7	81.3	100.4
45°	172.3	173.3	297.5

- 5. (a) What are the methods of site exploration? Explain about the soil samples and samplers? 2+3+5=10
 - (b) Determine the depth at which a circular footing of 2m diameter be founded to provide a factor of safety of 3, if it has to carry a safe load of 1600kN. The

foundation soil has $c = 100 \, kN/m^2$,

 $\phi = 30^{\circ}$ and unit weight = $18 kN/m^3$. Use Terzaghi's analysis.

For,
$$\phi=30^{\circ}$$
, $N_c=37\cdot2$, $N_q=22\cdot5$,

Results out
$$N_r = 19.7$$
 investable bins

- 6. Write short notes on: (any four) 4×5=20
 - (a) Standard Penetration test
 - (b) Design criteria of machine foundation
 - (c) Stone column
 - (d) Settlement of pile group in day
 - (e) Types of Caissons
 - (f) Grouting.