Total number of printed pages-3

The second second

2014

FOUNDATION ENGINEERING

Paper : CE 604

Sousial Full Marks : 100

Time : Three hours

The figures in the margin indicate full marks for the questions.

Answer any five questions.

- 1. (a) Define disturbed samples. Describe the various types of disturbed samples. 10
 - (b) Differentiate between cohesive soil and non-cohesive soil. Describe soil based on the values of shear strength parameters. 10

(b) . Write sheet notes int

- 2. (a) What do you understand by the term soil exploration? Describe the stages of soil exploration. 10
 - (b) Define foundation. What are the functions of foundation? 5

Contd.

	(c) (604)	What are the factors which result is differential settlement ?	n 5
		2014	
3.	(a)	What are the principal modes of soil failure Give the typical features of all the modes of soil failure with suitable diagrams.	? of 5
	(b)	Describe the mechanism of shear resistance	e. 5
4.	(a)	Define the following terms :	0
	(4)	Define the following terms .	0
		<i>(i)</i> Bearing capacity	
		(ii) Ultimate bearing capacity	
		(iii) Net ultimate bearing capacity	
		(iv) Net safe bearing capacity	
sod o ers. 1 m so of so		(v) Gross safe bearing capacity.	
	<i>(b)</i>	Write short notes on : 10	0
		(i) Grouting	
		(ii) Sand drains	Ċ,
		(iii) Stone column.	

53 (ÇE 604) FDEN/G

2

- 5. Calculate the net ultimate bearing capacity of a rectangular footing (2×4) m^2 in plan, founded at a depth of $1\cdot5m$ below the ground surface. The total load on the footing is eccentric in the direction of width by 15cm. The saturated unit weight of soil is $18kN/m^3$. Natural water table is at a depth of 2m below the ground surface. Given $\rightarrow C = 15kN/m^2$ and $\phi = 25^\circ$. Use IS code method. 20
- A nine pile group arranged in a square pattern is used as a foundation for a column in sand, φ = 32°. Piles 300mm in diameter and 10m in length are placed at a spacing of 900mm in each direction. Calculate the ultimate load capacity of the pile group, given unit weight of soil 18kN/m³.

7. If $\sigma_1 = 167 \ kN / m^2$, $\sigma_3 = 0$ and $\alpha = 54^\circ$. Determine

- (i) Shear strength parameters.
- (*ii*) Orientation of major and minor principal planes and the stresses acting on them
- *(iii)* Orientation of the plane of maximum shear stress.

Use Mohr's Circle.

53 (CE 604) FDEN/G

3

20

100