53 (CE 602) EVEN

2017

ENVIRONMENTAL ENGINEERING-II

Paper: CE 602

Full Marks: 100

Time: Three hours

The figures in the margin indicate full marks for the questions.

Answer any five questions.

- 1. (a) Differentiate between:
 - (i) Domestic sewage, industrial sewage and sanitary sewage
 - (ii) Combined and separate system of sewage.

(b) The drainage area of one sector of a town is 12 hectres. The classification of the surface of this area is as follows:

Type of surface	Coefficient of run off
Hard Pavement	0.85
Roof Surface	0.80
Unpaved Street	0.20
Garden	0.20
Wooded area	0.15
	surface Hard Pavement Roof Surface Unpaved Street Garden

If the time of concentration for the area is 30 minutes, find the maximum run off. Use the formula

$$R = \frac{900}{t + 60}$$
 12

2. (a) Determine the size of a circular sewer for a discharge of 600 litres per second running half full.

Assume bed slope = 0.0001 and n = 0.015.

(b) Draw a neat sketch of a drop manhole and indicate where it is used.

(c)	Write short notes on:	8
	(i) Testing of new sewers	

(ii) Types of sewer.

THE PARTY

3. (a) Calculate 1 day 37°C BOD of sewage sample whose 5 day 20°C BOD is 100mg/L. Assume K_D at $20^{\circ}C$ as 0.1.

> Distinguish between aerobic, anaerobic (b) and facultative microorganism and their role in the decomposition of sewage.

> (c) Explain in brief various methods of disposal of effluent from septic tank.

5

5

Design a circular settling tank unit for (a) a primary treatment of sewage at 12 million litres per day. Assume detention as 2 hrs and surface loading as 40,000 litres/m2/day. 8

- (b) A waste water effluent of $560L/\sec$ with a BOD = 50mg/L, DO = 30mg/L and temperature of $23^{\circ}C$ enters a river where the flow is $28m^3/\sec$ and BOD = $4\cdot0mg/L$, DO = $8\cdot2mg/L$ and temperature of $17^{\circ}C$. K_D of the waste is $0\cdot10$ per day at $20^{\circ}C$. The velocity of water in the river downstream is $0\cdot18m/s$ and depth of $1\cdot2m$. Determine the following after mixing of WW with the river water:
 - (i) Combined discharge
 - (ii) BOD
 - (iii) DO
 - (iv) Temperature.

8

- (c) Explain briefly the zones of pollution in a River-Stream.
- Describe in order the various stages followed in the construction of sewer.
- 6. Design an Imhoff tank to treat the sewage from a small town with 35,000 population. The rate of sewage may be assumed as 150 litres per head per day. Assume the necessary data.