2014 maint synt

FLUID MECHANICS

Paper: CE 303

Full Marks: 100

odig moet al viTime: Three hours

The figures in the margin indicate full marks for the questions.

Answer any five questions out of seven.

1. (a) What is meant by dimensional Homogeneity? Illustrate with any example.

3

(b) State Buckingham's theorem. The efficiency η of a fan depends on density ρ_1 , dynamic viscosity μ of the fluid, angular velocity ω , diameter D of the rotor and the discharge δ . Express η in terms of dimensionless parameters. 1+16

- 2. (a) Discuss continuity equation and derive for the equation $A_1V_1 = A_2V_2$, where symbols have their usual meaning.
 - (b) A 30 cm diameter pipe, conveying water, branches into two pipes of diameters 20cm and 15cm respectively. If the average velocity in the 30cm diameter pipe is 2.5 m/s, find the discharge in this pipe. Also determine the velocity in 15cm pipe if the average velocity in 20cm diameter pipe is 2 m/s.
- 3. (a) Derive Bernoulli's equation from Euler's equation of motion. Also list out the assumptions made in the derivation of Bernoulli's equation. 4+2
 - (b) A pipe of diameter 400mm carries water at a velocity of 25 m/s. The pressure at the points A and B are given as $29.43 N/cm^2$ and $22.563 N/cm^2$ respectively while the datum head of A and B are 28m and 30m.

Find the loss of head between A and B.

- 4. (a) What are the general practical applications of Bernoulli's equation? Discuss at least about two of them.
- (b) A horizontal venturimeter with inlet diameter 20cm and throat diameter 10cm is used to measure the flow of oil of sp. gr. 0.8. The discharge of oil through venturimeter is 60l/s. Find the reading of the oil-mercury differential manometer. Take $C_d = 0.98$.
- 5. (a) Differentiate between notches and weirs.
 Classify notches and weirs in different categories.
 - (b) Determine the height of a rectangular weir of length 6m to be built across a rectangular channel. The maximum depth of water on the upstream side of the weir is 1.8m and discharge is $2000 \, l/s$. Take $C_d = 0.6$ and neglect end contractions. 10
- 6. Discuss properties of fluid in detail. A plate 0.025mm distant from a fixed plate, moves at 60 cm/s and requires a force of 2N per unit area i.e. $2N/m^2$ to maintain this speed. Determine the fluid viscosity between the plates. 12+8

- 7. (a) Set a relation between Absolute, Gauge, atmospheric and vacuum pressures along with the definition of each type of the pressures.
- (b) What are the gauge pressure and absolute pressure at a point 3m below the free surface of a liquid having a density of $1.53 \times 10^3 \, kg/m^3$ if the atmospheric pressure is equivalent to 750mm of mercury? The specific gravity of mercury is 13.6 and density of water = $1000 \, kg/m^3$.

to Discuss proporties of fluid in detail, A plate

C' = 0 6 and neglect end contractions, 10