Total No. of printed pages = 8

RETEST EXAMINATION-2022

Semester: 5th

Subject Code: CAI-506

ELECTRONIC CIRCUITS AND DEVICES-II

Full Marks - 70

Time - Three hours

The figures in the margin indicate full marks for the questions.

Instructions:

1

- (i) All questions of PART-A are compulsory.
- (ii) Answer any five questions from PART-B.

PART-A

Marks-25

Fill	in the blanks:	TO SOFT K FE		1×14=14
(a)	A bipolar juncti			p-n
(b)	The quantity ☐ i	s usually bety	ween	and
(c)	The quantity between	□ provides _ and	a re	elationship
	TOTAL BELLEVIOLE	THE BATT		[Turn over

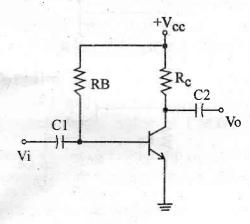
(d)	In a symbol of transistor, the arrow sign indicates
	For amplification purpose, the transistor must operate in the region of its output characteristics.
(f)	When a BJT goes into saturation, both emitte and collector base junctions arebiased.
(g)	For a transistor to operate as amplifier, the base emitter junction should bebiased.
(h	$I_{\rm C} = \alpha I_{\rm E} + \underline{\hspace{1cm}}$
<u>(</u> i)	An improper biased transistor produces in the output.
(j)	The intersection of DC load line with the given base current curve is the
(k)	Tuned amplifier used for
(1)	Positive feedback is employed in
(m)	Negative feedback in amplifiers reduces the gain but bandwidth .
	A high Q coil has selectivity.

2 Write true or false:

- (a) The resistivity of a semiconductor depends on the atomic structure of the semiconductor.
- (b) The potential barrier in a p-n junction increases with reverse bias and reduces with forward bias.
- (c) A p-n junction is forward bias if the n side is connected to the negative terminal of a battery and the p-side is connected to the positive terminal.
- (d) If a p-n junction is heavily doped, breakdown voltage will be reduce.
- (e) Zener diode operates in the reverse bias region.
- (f) The voltage gain of a transistor increases with the increase in load resistance.
- (g) A BJT fixed bias configuration has more temperature stability than voltage divider bias.
- (h) The most commonly used transistor arrangement is common collector.
- (i) I_{CO} of a transistor consists of majority carrier.

[Turn over

- 3. Choose the correct answers:
- $1 \times 2 = 2$
- (a) A Schmitt trigger converts a slowly varying waveform into a
 - (i) sinewave
- (ii) sawtooth wave
- (iii) triangular wave (iv) square wave
- (b) Oscillators used following feedback
 - (i) Positive
 - (ii) Negative
 - (iii) Both positive and negative
 - (iv) None of the above.

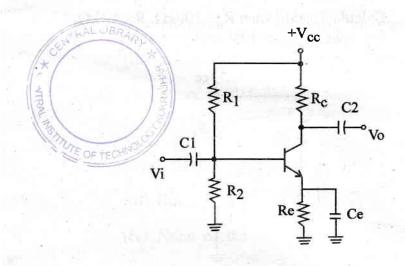

PART - B

Marks - 45

- 4. (a) Determine the expressions for I_B, I_C and V_{CE} for the following biasing circuits for a common emitter NPN transistor:
 - (i) Fixed Bias (ii) Emitter Bias. 6
 - (b) In a transistor Colpitt's oscillator, L= 100μ H, $C_1 = 0.001\mu$ F and $C_2 = 0.05\mu$ F, determine the operating frequency of the circuit. 3
- 105/CAI-506/EC&D-II (4)

5. (a) Deduce the expressions for input impedance, output impedance and voltage gain of the following circuit using r_e model of the transistor.

Calculate gain, when $R_B = 100k\Omega$, $R_C = 1k\Omega$, $r_o = 50k\Omega$, $V_{CC} = 12V$ and $\square = 100$.



- (b) What are the advantages of negative feedback in amplifiers?
- 6. (a) For the potential divider biasing circuit shown in the figure below, draw the h-parameter equivalent circuit. Also, calculate the following:
 - (i) Input impedance
 - (ii) Output impedance
 - (iii) Voltage gain
 - (iv) Current gain

105/CAI-506/EC&D-II (5)

[Turn over

[Given: $R_1 = 10 \text{ K}\Omega$, $R_2 = 5 \text{ K}\Omega$, $R_c = 3 \text{ K}\Omega$, $R_E = 1 \text{K}\Omega$, $V_{cc} = 20 \text{ V}$, $h_{ie} = 1 \text{ K}\Omega$, $h_{fe} = 100$, $h_{oe} = 20\mu\text{A/V}$, $h_{re} = 2 \times 10^{-4}$]

- (b) Draw the circuit of a voltage supply comprised of a full wave bridge rectifier, capacitor filter and IC regulator to provide an output of +12V.
- 7 Draw the ideal structure and equivalent circuit of series shunt feedback amplifier. Determine the expression for gain, input impedance and output impedance of the amplifier.
- 8. (a) Draw the circuit diagram of Colpitt's oscillator and describe its working. 5

-		
	(b)	Draw the circuit diagram of the following:
		(i) Phase Shift Oscillator
	ng ba	(ii) Wein Bridge Oscillator
		Also write the equation for operating frequency in each case. 4
9.	(a)	What are the Barkhausen criteria for continuous oscillation?
	(b)	Define the common mode rejection ratio (CMRR) and explain the significance of relatively large value of CMRR. 3
	(c)	Draw the circuit diagram of OPAMP half-wave rectifier and describe its operation. 3
10.	(a)	Draw the block diagram and circuit diagram of series voltage regulator. Describe the operation of the circuit in brief. 5
	(b)	Describe the working of IC LM317 with a suitable diagram.
11.	(a)	Draw the equivalent circuit diagram of Crystal Oscillator and explain its working.
	(b)	Draw the circuit diagram of a first order active low pass filter and derive the expression for gain.

105/CAI-506/EC&D-II

- 12. (a) Draw the circuit diagram of a tuned amplifier and explain its working.

 4
 - (b) What are the advantages of using double tuned circuit as compared to the single tuned circuit?
 - (c) A tuned amplifier consists of a tank circuit having $R=10\Omega$, $L=50\,\text{mH}$ and $C=0.1\mu\text{F}$. Determine resonant frequency of the amplifier, Q factor of the tank circuit and bandwidth of the amplifier.

