Total No. of printed pages = 8

END SEMESTER EXAMINATION -2019

Semester : 5th

Subject Code : CAI-506 NSTITU

ELECTRONIC CIRCUITS AND DEVICES-II

Full Marks – 70

Time - Three hours

The figures in the margin indicate full marks for the questions.

Instructions:

1

- 1. Questions on PART-A are compulsory.
- 2. Answer any five questions from PART-B.

PART – A

Marks – 25

Fill	in the blanks:	1×14=14
(a)	A bipolar junction transistor hasjunctions andterminals.	PN
(b)	The quantity β is usually between and	

46/CAI-506	i's
bii	(l) Positive feedback is employed in
(g) A	(k) Tuned amplifier used for
(f) Th	(j) The intersection of DC load line with the given base current curve is the
(e) Ze	(i) An improper biased transistor produces in the output.
A METHOTE OF THE WOOD	(h) $I_C = \alpha I_E + \frac{*}{\alpha I_{PAL}}$
WOLOGY KOMON	(g) For a transistor to operate as amplifier, the base emitter junction should be biased.
#	and collector base junctions arebiased.
(b) T	(f) When a BJT goes into saturation, both emitter
(a) T	(e) For amplification purpose, the transistor must operate in the region of its output
2. Write	(d) In a symbol of transistor, the arrow sign indicates
(B)	(c) The quantity β provides a relationship between and

- high Q coil has selectivity.
- true or false:

1×9=9

- n the atomic structure of the semi-conductor. he resistivity of a semi-conductor depends
- orward bias. creases with reverse bias and reduces with he potential barrier in a PN junction
- sitive terminal. ittery and the P side is connected to the connected to the negative terminal of a PN junction is forward bias if the N side
- a PN junction is heavily doped, breakdown oltage will be reduced.
- gion. ener diode operates in the reverse bias
- ith the increase in load resistance. ne voltage gain of a transistor increases
- nperature stability than voltage divider BJT fixed bias configuration has more

- (h) The most commonly arrangement is common collector. used transistor
- (i) I_{co} of a transistor consist of majority carrier.
- w Choose the correct answer:

- (a) A Schmitt trigger converts a slowly varying waveform into a
- (i) sinewave
- (ii) sawtooth wave
- (iii) triangular wave (iv) square wave
- (b) Oscillators used the following feedback: CENTRALLIBRARY *
 - (i) Positive
- (ii) Negative
- (iii) Both positive and negative

SEMPRAL MISTITUTE

(iv) None of the above.

PART-B

Marks - 45

(a) Determine the expressions for I_B , I_C and V_{CE} common emitter NPN transistor for the following biasing circuits for a

6

- (i) Fixed bias.

- (ii) Emitter bias

- (b) In a transistor Colpitt's oscillator, L= 100μH, the operating frequency of the circuit. 3 $C_1 = 0.001 \mu F$ and $C_2 = 0.05 \mu F$, determine
- (a) Deduce the expressions for input impedance, following circuit using re model of the transistor. output impedance and voltage gain of the

Calculate gain, when $R_B = 100k\Omega$, R_C $r_o = 50k\Omega$, $V_{CC} = 12V$ and $\beta = 100$.

TECHNOLOGY

- (b) What are the advantages of negative feedback in amplifiers?
- (a) For the potential divider biasing circuit shown in the figure below, draw the the following: h-parameter equivalent circuit. Also, calculate
- (i) Input impedance

46/CAI-506/EC&D-II

Turn over

3

- (ii) Output impedance
- (iii) Voltage gain
- (iv) Current gain

[Given: $R_1 = 10 \text{ K}\Omega$, $R_2 = 5 \text{ K}\Omega$, $R_c = 3 \text{ K}\Omega$, $R_E = 1 \text{K}\Omega$, $V_{cc} = 20 \text{ V}$, $h_{ie} = 1 \text{ K}\Omega$, $h_{fe} = 100$, $h_{ce} = 20 \mu \text{A/V}$, $h_{re} = 2 \times 10^{-4}$]

- (b) Draw the circuit of a voltage supply comprised of a full wave bridge rectifier, capacitor filter and IC regulator to provide an output of +12V.
- Draw the ideal structure and equivalent circuit of series shunt feedback amplifier. Determine the expression for gain, input impedance and output impedance of the amplifier.
- 46/CAI-506/EC&D-II (6)

- (a) Draw the circuit diagram of Colpitt's oscillator and describe its working. 5
- (b) Draw the circuit diagram of the following:
- Phase Shift Oscillator
- (ii) Wein Bridge Oscillator

Also write the equation for operating frequency in each case.

(a) What are the Barkhausen criteria for continuous oscillation?

9

- (b) Define the common mode rejection ratio (CMRR) and explain the significance of relatively large value of CMRR. 3
- (c) Draw the circuit diagram of OPAMP halfwave rectifier and describe its operation. 3
- 10. (a) Draw the block diagram and circuit diagram of series voltage regulator. Describe the operation of the circuit in brief.

 5
- (b) Describe the working of IC LM317 with a suitable diagram.
- (a) Draw the equivalent circuit diagram of Crystal Oscillator and explain its working.

9

- (b) Draw the circuit diagram of a first order active low pass filter and derive the expression for gain.

 4
- 12. (a) Draw the circuit diagram of a tuned amplifier and explain its working.
 - (b) What are the advantages of using double tuned circuit as compared to the single tuned circuit?
 - (c) A tuned amplifier consists of a tank circuit having $R=10\Omega$, L=50~mH and $C=0.1~\mu\text{F}$. Determine resonant frequency of the amplifier, Q factor of the tank circuit and bandwidth of the amplifier.

10 (a) Draw the block dingram and oncur dingram

traction of mislows one totalised side. Are then