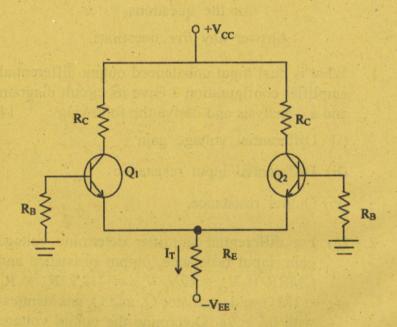
CAI-506/ECD-II/5th Sem/2016/N

ELECTRONIC CIRCUITS AND DEVICES - II

Full Marks - 70

Pass Marks - 28


Time - Three hours

The figures in the margin indicate full marks for the questions.

Answer any five questions.

- 1. What is dual input unbalanced output differential amplifier configuration? Give its circuit diagram and a.c analysis and derive the following:
 - (i) Differential voltage gain
 - (ii) Differential input resistance
 - (iii) Output resistance.
- 2. (a) For differential amplifier determine voltage gain, input resistance, output resistance and CMRR if $V_{CC} = 12V$, $V_{EE} = -12V$, $R_C = R_E = 1M\Omega$ and transistor Q_1 and Q_2 are identical with $\beta_{ac} = 98$. Determine the output voltage when $V_{in} = 0$ and $V_{in} = -2mV$.

- (b) In the circuit diagram $V_{CC} = +15V$, $V_{EE} = -15V$, $R_{C} = 10 \text{ k}\Omega$, $R_{E} = 10 \text{ k}\Omega$, $R_{B} = 20 \text{ k}\Omega$
 - (i) Determine output voltage if transistors Q_1 and Q_2 are identical with $\beta_{dc} = 80$.
 - (ii) Determine base current and base voltages.
 - (iii) Determine base current and base voltages if transistors Q_1 and Q_2 are identical except β_{dc} . Q_1 has $\beta_{dc} = 65$ and Q_2 has $\beta_{dc} = 85$.

- 3. (a) Explain the functional block diagram of a typical three terminal IC voltage regulator.
 - (b) Define the following parametes for IC voltage regulator:
 - (i) Line regulation
 - (ii) Load regulation
 - (iii) Output resistance
 - (iv) Dropout voltage.
 - (c) Design and draw a Zener regulator circuit to meet the following specification: 5
 Load voltage = 6.8V, Input voltage = 25V,
 Load current = 0 40 mA, I_{z min} = 5mA,
 P_z = 1 watt.
 - 4. (a) What is tuned amplifier? Draw and explain the circuit diagrams of single tuned amplifier and its frequency response.
 - (b) The tuned amplifier with capacitive coupling having $R=10\,\Omega$, L=20 mH and C=0.07 μF . Determine :
 - (i) Resonant frequency
 - (ii) Q factor of the tank circuit
 - (iii) Bandwidth.

- (c) Differentiate between active filters and passive filters.
- 5. (a) Explain the working of Wein bridge oscillator. Derive the frequency of oscillation and condition for oscillation. Also give the advantage.
 - (b) Explain the operation of full-wave precision rectifier with circuit diagram and give its waveform.
 - 6. (a) Explain the working of an SCR giving its construction and V-I characteristics.
 - (b) Give the advantages of negative feedback. 3
 - (c) If the open-loop gain $A_v=10{,}000$ and feedback ratio $\beta=\frac{1}{10}$, then for a negative feedback, find the percentage change in closed loop gain when open loop gain varies 50% with temperature.
 - (d) Positive feedback is used in 1

- 7. Write short notes on any two: $7 \times 2 = 14$
 - (i) Stagger tuned amplifier
 - (ii) UJT
 - (iii) Crystal oscillator
 - (iv) Buck regulator
 - (v) Adjustable power supply.

il n 4

ge nd R_E cal ige