Total No. of printed pages = 8 CAI-501/CS/5th Sem/2018/M

CONTROL SYSTEMS

Full Marks - 70

Pass Marks - 28

Time - Three hours

The figures in the margin indicate full marks for the questions.

PART – A

1. Fill in the blanks :

1×10=10

- (a) The element for viscous friction is often represented by a _____.
- (b) The transfer function is defined only when the are neglected.
- (c) A synchro is commonly known as .
- (d) ____ loops are loops which do not possess any common node.
- (e) The distance between the time response peak and the steady output is called the _____.
- (f) The _____ error is a measure of system accuracy.

Turn over

- (g) The velocity error constant K_v is indicative of the error in output for a _____ input.
- (h) Stability is a very important characteristic of the _____ response of the system.
- (i) The root locus is _____ about the real axis.
- (j) The bode plot is also called as the ______ plot.
- 2. Choose the correct answer : $1 \times 15 = 15$
 - (i) The output of the controller in a control system is given to _____.
 - (a) Amplifier
 - (b) Comparator
 - (c) Final control element
 - (d) Plant

(ii) The synchro-transmitter acts like a/an

(a) Transformer (b) Alternator

(2)

(c) Tacho-generator (d) Induction motor

45/CAI-501/CS

(iii) The position and velocity errors of a Type-2 system are _____.

- (a) Constant, Constant
- (b) Zero, Constant
- (c) Constant, Infinity
- (d) Zero, Zero
- (iv) In a critically damped system, the damping factor is of the order of _____
 - (a) zero (b) less than unity
 - (c) unity (d) greater than unity
- (v) The type zero system has _____ at the origin.
 - (a) no pole (b) net pole
 - (c) simple pole (d) two pole
- (vi) If the characteristic equation of a system is $s^{2}+2s+1$ are
 - (a) undamped (b) overdamped
 - (c) critically damped (d) underdamped

45/CAI-501/CS

(3)

[Turn over

(vii)Three blocks with gains of 5, 6 and 8 are connected in series. The total gain of the arrangement is

(a) 17	(b)	160
(c) 19	(d)	240

(viii) The overshoot due to increase of damping factor

(a) increases

(b) decreases

(c) remains constant

(d) None of the above

(ix) The Laplace transform of impulse function is

(a)	0		(b)	1

- (c) s (d) 1/s
- (x) The motion of mechanical element can be described as _____.
 - (a) purely rotational
 - (b) purely translational
 - (c) rotational or translational or combination of both

(4)

(d) None of these

45/CAI-501/CS

(xi) If the system has G(s) = 1/s(1+4s), the system is _____.

(a)	stable	(c)	marginally	stable
			Partition La	

(b) unstable (d) conditionally stable

(xii) For a second order system as ξ is increased from zero, the response becomes .

(a) more oscillatory

- (c) zero
- (b) less oscillatory
- (d) infinity

(xiii) A feedback system has the transfer function given by

 $C(s)/R(s) = 4(s+2)(s+4)/s^4(s+1)$ (s³+ 3s²+ 6s+8). It is a _____.

- (a) Type-6 system
- (c) Type-8 system
- (b) Type-4 system
- (d) Type-10 system

45/CAI-501/CS

(5)

[Turn over

(xiv) If all the roots of the characteristic equation have negative real parts, then the system is

- (a) stable
- (b) unstable
- (c) conditionally stable
- (d) marginally stable
- (xv) The frequency where M has a peak value is known as the
 - (a) Peak frequency
 - (c) Normalized frequency
 - (b) Resonant frequency
 - (d) None of these

PART - B

Answer any five questions : 3.

9×5=45

(a) Determine the transfer function of the system shown in the below figure 1.

(b) Derive the transfer function $Y_2(s)/F(s)$ for the given mechanical system shown in below figure 2.

- (c) Obtain the response of a unity feedback system whose open-loop transfer function is G(s) = 2/s(s+3) for a unit-step input and sketch the response.
- (d) Using routh criterion, determine the location of the roots of the following characteristic equations and comment on the stability of the systems.

(a) $S^{4}+4s^{3}+s^{2}+8s+1=0$

- (b) $s^4+8s^3+18s^2+16s+5=0$
- (e) A unity feedback control system has an open loop transfer function, G(s) = 5/s(s+1). Find the natural frequency, damping ratio, peal time, percentage overshoot and settling time for a step input of 10 units.

45/CAI-501/CS

(7)

[Turn over

- (f) Explain the construction and working of a synchro with suitable example.
- (g) For servo mechanisms with open loop transfer function given below explain what type of input signal give rise to a constant steady state error and calculate their values.

(i) G(s) = 20/(s+1)(s+4)

(ii)
$$G(s) = 10(s+4)/s(s+1)(s+2)$$

(iii)
$$G(s) = 20/s^2(s+1)(s+4)$$

45/CAI-501/CS

20(P)