Total No. of printed pages = 7

CAI-501/CS/5th Sem/2017/N

CONTROL SYSTEMS

Full Marks – 70

Pass Marks - 28

Time - Three hours

The figures in the margin indicate full marks for the questions.

1. Fill in the blanks :

 $10 \times 1 = 10$

- (a) _____ Feedback is employed in control systems.
- (b) A physical system is a collection of _____ connected together.
- (c) In mechanical _____ system, motion takes place about a fixed axis.
- (d) The inverse Laplace transform of 1.5/s(s+1) is
- (e) ______ is called the loop transfer function or open-loop transfer function.

[Turn over

- (f) The Laplace transform of impulse function is
- (g) A system with two open loop poles at the origin of the s-plane is called a
- (h) Stability is a very important characteristic of the response of the system.
- (i) The frequency where M has a peak value is known as the _____
- (j) M_r and M_p depends only on _____
- 2. Choose the correct answers : 11×1=11
- (i) A synchro transmitter is used for
 - (a) Feedback (b) Amplification
 - (c) Error Detector (d) Remote sensing
- (ii) In an automatic control system, which of the following elements is not used ?
 - (a) Error detector
 - (b) Final control element
 - (c) Sensor
 - (d) Oscillator.

203/CAI-501/CS

(2)

- (iii) The frictional force acts in a direction
 - (a) opposite to that of motion
 - (b) along that of motion
 - (c) perpendicular to that of motion
 - (d) towards to that of motion.
- (iv) A system has the following transfer function: $G(s) = 100(s+5)(s+50)/s^4(s+10)(s^2+3s+10)$
 - The type and order of the system are, respectively,
 - (a) 4 and 9
 (b) 4 and 7

 (c) 5 and 7
 (d) 7 and 5
- (v). For the system $C(s)/R(s) = 16/s^2+6s+16$, the nature of the time response will be
 - (a) Overdamped (b) Undamped
 - (c) Critically damped (d) Underdamped
- (vi). The steady state error for a type 2 system subjected to unit ramp input is

[Turn over

(a)	1	(b)	infinity
(c)	1/K	(d)	0
03/CAI-50	1/CS	(3)	

- (vii) Three blocks with gains of 4, 6 and 8 are connected in parallel. The total gain of the arrangement is
 - (a) 17 (b) 160
 - (c) 44 (d) 37.

(viii) The overshoot due to decrease of damping factor

- (a) increases (b) decreases
- (c) remains constant (d) None of the above.
- (ix) The damping ratio of a system is 0.5. the value of M, is

(a)	2.308	(b)	1.54
(c)	1.01	(d)	0.5

- (x) The root locus is
 - (a) an algebraic method
 - (b) a graphical method
 - (c) combination of graphical and algebraic methods
 - (d) None of these.

(xi) If the system has G(s) = 1/s(1+4s), the system is (a) stable

- (b) unstable
- (c) marginally stable
- (d) conditionally stable.
- 3. Match the following :
 - (i) Overdamped
 (a) Complex conjugate
 (ii) Underdamped
 (b) Real and different
 (iii) Critically damped
 (c) Purely imaginary
 (d) Real and equal.

Answer any five questions :

5×9=45

 $4 \times 1 = 4$

4. Draw the equivalent signal flow graph and determine the overall gain using Mason's gain formula.

203/CAI-501/CS

(5)

[Turn over

203/CAI-501/CS

(4)

5. Derive the transfer function $\Theta_2(s)/T(s)$ for the given rotational mechanical system shown in below figure 02.

- 6. Write short notes on synchro and AC position control system.
- 7. The forward path transfer function of a unity feedback control system is given by G(s) = 2/s(s+3), obtain an expression for unit step response of the system.
- 8. A unity feedback control system has an open loop transfer function, G(s) = 12/s(s+3). Find the natural frequency, damping ratio, peal time, percentage overshoot and settling time for a step input of 10 units.
- 9. For servomechanisms with open loop transfer function given below, explain what type of input signal give rise to a constant steady state error and calculate their values.
 - (a) G(s) = 20(s+2)/s(s+1)(s+3)
 - (b) $G(s) = \frac{10}{(s+2)(s+3)}$
 - (c) $G(s) = 10/s^2(s+1)(s+2)$.
- 203/CAI-501/CS

- 10. Using Routh criterion, determine the location of the roots of the following characteristic equations and comment on the stability of the systems.
 - (a) $S^4 + 2s^3 + 10s^2 + 8s + 3 = 0$
 - (b) $S^5 + s^4 + 24s^3 + 48s^2 25s 5 = 0$.
- 11. Write the rules for construction of root locus ?

203/CAI-501/CS

(7)

100(Y)