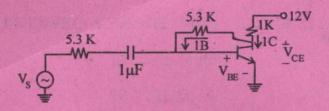
CAI-404/EC&D-I/4th Sem/2017/M

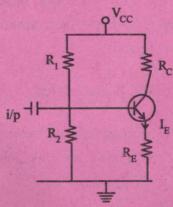
ELECTRONIC CIRCUITS AND DEVICES-I

Full Marks - 70

Pass Marks - 28


Time - Three hours

The figures in the margin indicate full marks for the questions.


Answer any five questions.

- 1. (a) What is transistor? Draw the circuits of various transistor configuration.
 - (b) Why the width of the base region of a transistor is kept very small compared to other regions?
 - (c) How α and β are related to each other? 1
 - (d) What do you understand by transistor biasing? What is the need for bias stabilization? 3

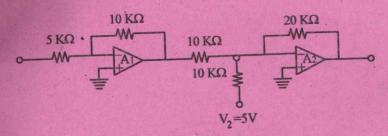
(c) In the circuit shown transistor has $\beta = 60$ and $V_{BE} = 0.7V$. Find the operating point.

- 2. (a) Derive the expression of input resistance, voltage gain and current gain in terms of h parameters of a transistor amplifier.
 - (b) In the CE amplifier of figure, $I_E = 1\text{mA}$, $R_E = 1000\Omega$ and $\beta = 49$. Find the values of R_1 and R_2 such that the stability factor does not exceed 5. Assume $V_{CC} = 5$ volts and $V_{RE} = 0$.

- 3. (a) Differentiate the following: 3+3=6
 - (i) Voltage amplifier and power amplifier.
 - (ii) Class A and class B power amplifier.
 - (b) Find the efficiency of class A power amplifier.
 - (c) A class A, CE amplifier operates from $V_{CC} = 25V$, draws a no signal current of 6A and feeds a load of 30Ω through a step up transformer of n_2 : $n_1 = 2.5$. Find effective input resistance at collector end for maximum power transfer and conversion efficiency at maximum signal input.
- 4. (a) What is an oscillator? Give the two conditions for oscillation in feedback amplifier.

1+2=3

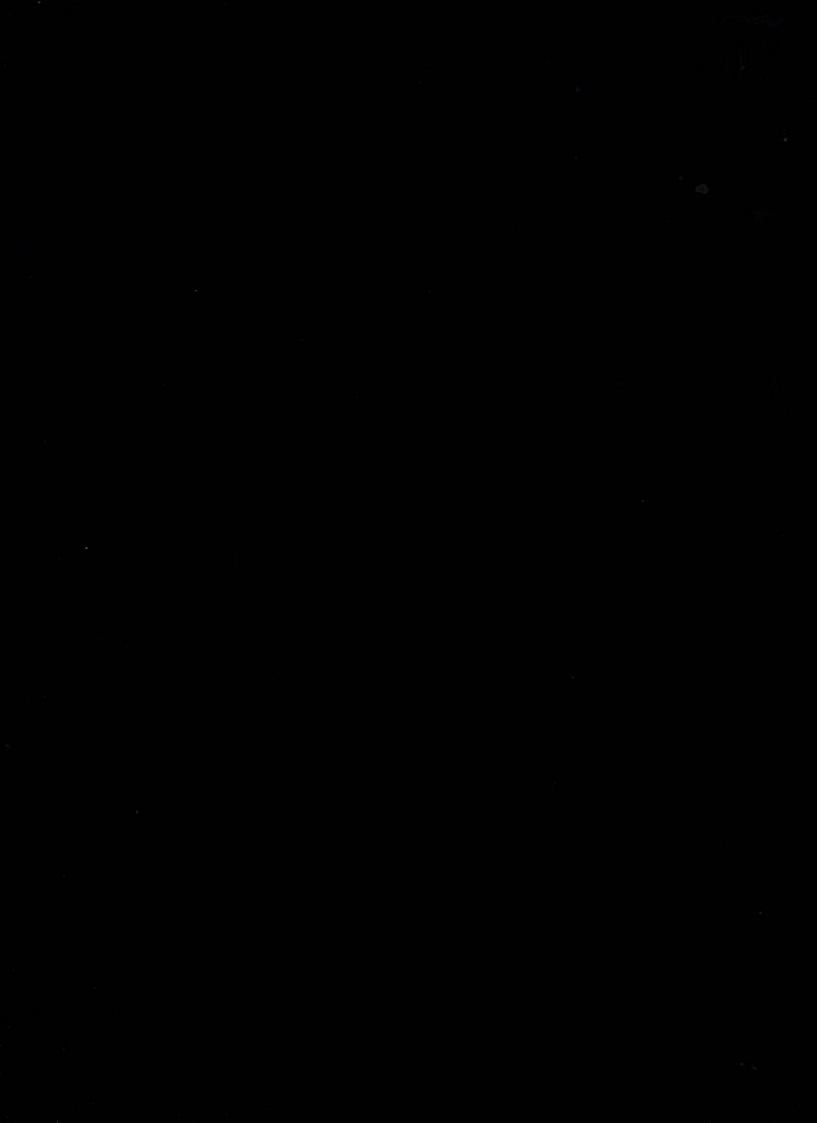
(b) How does Hartley oscillator differ from Colpitt's oscillator in construction? Explain with neat diagram the working of a typical inductance type high frequency oscillator.


1+5=6

(c)	A Hartley oscillator is designed with L ₁ =
	5mH, $L_2 = 25\mu H$ and a variable capacitance.
	Determine the range of capacitance values, if
	the frequency of oscillation is varied between
	850 KHz and 2030 KHz. 4
(d)	The oscillator is an amplifier with
	feedback.
(a)	List the characteristics of an ideal Op-Amp.
	4
(h)	Define following :
(0)	Define following: 4
	(i) CMRR
	(ii) Slew Rate
	(iii) Input offset voltage
	(iv) PSRR
(c)	Explain how Op-Amp can be used as –
	2+2=4
	(i) Voltage follower
	(ii) Integrator.
	(ii) mobile

5.

(d) Find output of the given circuit:


2

- 6. (a) Draw the circuit diagram of CMOS NAND gate and explain its operation.
 - (b) Describe construction, working and characteristics of N-channel FET. 6
 - (c) Calculate the minimum value of V_{DS} required for an NMOSFET to operate in pinch-off condition when $V_{GS} = 1V$, $V_{P} = -2V$, $I_{DSS} = 10\text{mA}$. Also find the corresponding drain current.
 - 7. Write short notes on any two:

 $7 \times 2 = 14$

- (i) Push-pull amplifier
- (ii) Multivibrator
- (iii) Deplation mode MOSFET
- (iv) nMOS.

