CAI-402/EM&C/4th Sem/2019

ELECTRICAL MACHINES AND CONTROL

Full Marks -70

Time - Three hours

The figures in the margin indicate full marks for the questions.

Instructions:

- 1. Questions on PART A are compulsory.
- 2. Answer any five questions from PART B.

PART – A Marks – 25

1. Fill in the blanks:

1×10=10

- (a) The primary and secondary of a transformer are ——— coupled.
- (b) A transformer will have zero efficiency at
- (c) The back e.m.f in a d.c motor ——— the applied voltage.
- (d) When a 3-phase induction motor is at no load, the slip is practically ——.

[Turn over

	6	-
motor is ——.	a slip s, then approximate efficiency of the	TC - 3 -1 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1

- 3 current M.N.A — with G.N.A When a d.c generator carries no armature
- (9) equal to ---- the applied voltage. The mechanical power developed in a d.c motor is maximum when back e.m.f (E_b) is
- E line current is —— times of phase current. In delta connected three phase system, the
- Ξ electromechanical energy conversion area converted into -The losses that occur during
- 9 armature resistance of a DC generator, then If W_c is the constant loss and R_a is the efficiency is load current I_L corresponding to maximum
- 2. Choose the correct option:

1×10=10

- (a) What will happen if the back emf of a DC motor vanishes suddenly?
- (i) The motor will stop
- (ii) The motor will continue to run
- (iii) The armature may burn
- (iv) The motor will run noisy
- 58/CAI-402/EM&C 3

- 3 Direction of rotation of motor is determined
- (i) Faraday's law
- (ii) Coulomb's law
- (iii) Lenz's law
- (iv) Fleming's left hand rule
- TRAL INSTITUTE OF TECHNOLOGY <u></u> autotransformer? In which mode power is transferred in

CONCLUMAR SE

- (i) Induction
- (ii) Induction and conduction
- (iii) Conduction
- (iv) Can not be said
- **a** The field of an induction motor rotates relative to the stator at
- (i) Rotor speed
- (ii) Slip speed
- (iii) Synchronous speed
- (iv) Very low speed

- @ With respect to the direction of rotation, the polarity as the main poles interpoles on a DC generator have the same
- (i) behind them
- (ii) ahead of them
- (iii) either (i) or (ii)
- (iv) neither (i) or (ii)
- \mathfrak{S} The single-phase series motor can operate
- (i) AC only
- (ii) DC only
- (iii) Both DC and AC
- (iv) None of the above
- 9 phase induction motor is to The purpose of starting winding in a single-
- (i) reduce losses
- (ii) produce rotating flux in conjunction with main winding
- (iii) limit temperature of the machine
- (iv) None of the above

(iv) None of these

- Ξ Ξ A transformer has full-load copper loss of (i) open-circuited secondary is The condition of induction motor on load (iii) 400W (i) 100W (iii) supplying a variable resistive load (ii) short-circuited 400W. The copper loss at half full-load will resemble those of a transformer whose (ii) 200W (iv) None of these
- 9 A 50 Hz, 4-pole, single-phase induction (iii) 750 rpm (i) 1500 rpm motor will have a synchronous speed of (ii) 1200 rpm
- w Write true or false: Transformer can work on both AC and DC $1 \times 5 = 5$

(iv) None of these

Transformer is rated in kW.

4

- <u></u> In a DC machine, rectification provided with commutator is full wave rectification.
- <u>a</u> An autotransformer is transformer. a two winding
- <u>@</u> principle of Faraday's law of electromagnetic DC generators work on the fundamental induction.

PART - B

(a) Derive the condition for maximum efficiency of a transformer.

The no load current of

PECHNOLOGY

<u>c</u>

- **e** winding is 200. Calculate 50 Hz. The number of turns on the primary at 0.3 p.f. lagging when supplied at 230V, Commercial Commercial
- (i) the maximum value of flux in the core
- (ii) the core loss
- (iii) the magnetizing current

- 3 The primary and secondary windings of a tively and the iron loss is 2.9 kW. Calculate resistance of 0.42Ω and 0.0011Ω respecefficiency at 500 kVA, 6600 / 400V transformer have 3+3+3=9
- (i) full load
- (ii) half full-load Assume p.f of the load to be 0.8 lag.
- (a) Define DC motor and DC generator. Describe the working principle of DC motor.

2

- 3 What is armature reaction in DC generator? Explain with the help of diagram
- resistance of 0.04Ω and 80Ω respectively armature and shunt field winding have through feeders of resistance 0.08Ω. The A shunt generator supplies 75A at 200V Find the terminal voltage and generator 3+3+3=9
- ç, (a) Derive the voltage equation of DC motor. power. Also derive the condition for maximum
- 3 Describe the characteristics of DC series motors

3

- (c) A 230V DC shunt motor takes 5A at no load and runs at 1000 rpm. Calculate the speed when loaded and taking a current of 30A. The armature and field resistances are 0.2Ω and 230Ω.
- 4. (a) Describe the principle of operation of three phase induction motor.
- (b) What is slip? Derive the expression for rotor current frequency.
- (c) A 3-phase, 50 Hz induction motor has 8 poles. If full load slip is 2.5%.

Determine:

- (i) synchronous speed
- (ii) rotor speed
- (iii) rotor frequency.
- 3+3+ CENTRALLIBRARY

MUNITE AND

- 5. (a) Write some advantages of three phase system over single phase system.
- (b) Derive the relation between phase voltage and line voltage in star connected three phase system. Draw the circuit diagram as well as the phasor diagram.

Three similar coils A, B, C are available. Each coil has 9Ω resistance and 12Ω reactance. They are connected in delta to a 3 phase, 440V, 50 Hz supply. Calculate for this load:

<u></u>

- (i) the line current
- (ii) the power factor
- (iii) the kilovolt amperes
- 6. Write short notes on any three:

3+3+3=9

- (a) Autotransformer
- (b) Capacitor start and run motor
- (c) AC series motor
- (d) Direct-on-line starter
- (e) Types of DC generator.

9