Total No. of printed pages = 5

CAI-401/BEC/4th Sem/2013/N

BASIC ELECTRICAL CIRCUITS

Full Marks - 70

Pass Marks – 28

Time - Three hours

The figures in the margin indicate full marks for the questions.

Answer any five questions.

- 1. (a) What colour bands will be found on the following resistances?
- (i) Nominal value of 1 M Ω and tolerance of $\pm 5\%$.
- (ii) Nominal value of 1 K Ω and tolerance of $\pm 5\%$.
 - (iii) Nominal value of 10 K Ω and tolerance of \pm 10%. $2\times3=6$
 - (b) Two coils connected in series have a resistance of 18Ω and when connected in parallel have a resistance of 4Ω . Find the value of resistances of the two coils. 5

[Turn over

(c) Find the value of V_{xy} .

. 3

2. (a) Using Kirchoff's law, calculate the current in 2Ω resistor of the following network. 5

- (b) When a 1 KΩ load is connected across a 20mA current source, it is found that only 18mA current flows in the load. What is the internal resistance of the source?
 - (c) Calculate the current in the 3 KΩ resistor by converting the current source into a voltage source.

 (a) In the following network find the magnitude and direction of each branch current by using Mesh Current Method.

(b) Using Nodal analysis, find the current through 25Ω resistance. 7

- 4. (a) Verify the answer of Q. 3(a) using superposition theorem. 7
 - (b) Using Thevenin's theorem, find the value of current flowing through 10Ω resistor. 7

24/CAI-401/BEC

(3)

[Turn over

5. (a) Convert the following \triangleleft -network to an equivalent λ -network. 7

(b) Find the value of R_L necessary to obtain maximum power in R_L . Also find the maximum power in R_L . 7

6. (a) Using Norton's theorem, find the current in 6Ω resistor. 7

(4)

24/CAI-401/BEC

100(B)

(b) Using Millman theorem, find the current through load resistance R_L in the following network. 7

- 7. (a) Write short notes on :
 - (i) Kirchoff's current and voltage laws
 - (ii) Thevenin's theorem

(iii) Maximum power transfer theorem.

(b) Define the following terms of an alternating quantity —

rms value, form factor, peak factor, average value, phase. 5

100(B)

9