Total No. of printed pages = 4 CAI-303/Digital Circuits/3rd Sem/2014/N

DIGITAL CIRCUITS

Full Marks - 70 Pass Marks - 28

Time - Three hours

The figures in the margin indicate full marks for the questions.

Answer any five questions.

- (a) Using Boolean algebra, simplify the following expressions as much as possible. 2×2=4
 - (i) $\overline{ABC} + \overline{ABC} + \overline{ABC}$
 - (ii) $AB + \overline{AB}C + A$
 - (b) Draw the logic circuit represented by below expression

$$Y = A + B [C + D(B + C)]$$
 3

(c) Use K-map method to simplify the following Boolean function : 5 $Y = f(w, x, y, z) = \sum m (0, 2, 4, 5, 8, 10, 12, 14, 15)$

[Turn over

- (d) (i) Convert (1001), to decimal.
- (ii) Convert (DAF1)₁₆ to binary. $1 \times 2=2$
- 2. (a) Show how the following expressions can be implemented using NAND gate only.

(i)
$$Y = ABC$$
 (ii) $Y = \overline{ABC}$. $3 \times 2 = 6$

(b) Show how the following expressions can be implemented using NOR gate only.

(i)
$$Y = A + B$$
 (ii) $Y = A + B + \overline{C}$ $3 \times 2 = 6$

5

5

2

- (c) Use basic gates to implement $Y = AB + \overline{B}C$.
- 3. (a) Implement Half Adder logic circuit.
 - (b) Show how a 2 to 4 decoder logic circuit can be implemented starting from its truth table.
 - (c) (i) Convert decimal 26 to BCD. $1 \times 2=2$
 - (ii) Convert BCD 10101011 to decimal.
 - (d) Apply DeMorgan's law to

$$\mathbf{Y} = \mathbf{A} + \mathbf{\overline{B}} + \mathbf{\overline{C}} + \mathbf{\overline{d}} \cdot \mathbf{\overline{b}}$$

3/CAI-303/Digital Circuits (2)

- 4. (a) Design a 4:1 multiplexer logic circuit starting from its function table. 6
 - (b) Describe the truth table of a S-R latch. 3
 - (c) Draw the logic diagram of J-K latch and describe its truth table. 3+2=5
- 5. (a) Draw the block diagram of 2 bit binary parallel adder. 3
 - (b) Use 1's complement method to perform the subtraction 1010 0100. 3
 - (c) Use K-map method to simplify $Y = f(x, y, z) = \sum m (0, 2, 4)$ with don't care conditions d (3, 5). 5
 - (d) Convert f(x, y, z) = xy + x'y' to cannonical SOP form. 2
 - (e) 2's complement of 10010001 is 1
- 6. (a) Explain the operation of a 2 bit ripple counter with block diagram, timing diagram. 7
 - (b) What are the main differences between synchronous and asynchronous logic? 3

3/CAI-303/Digital Circuits (3) [Turn over

ting	(c) Describe the truth table of D-latch.	3
((d) Multiplied value of 101×11 is	1
7. ((a) Implement full subtractor circuit.	7
)==5	(b) Design a 4 to 2 encoder logic circuit startification from its truth table.	ing 5
) a)	c) Convert (243) ₈ to binary.	1
	d) Convert (40) ₁₀ to binary.	1
E	suburation 2010 - 0100)	1.
enso Care	$T = T(T = 0) = \sum_{i=1}^{n} t_{i}(0, 2i) = 1$	
	A MARKEN OF A REAL TALE OF A REAL PROPERTY OF A	

3/CAI-303/Digital Circuits (4)

50(Y)