Total No. of printed pages = 5 CAI-303/DC/3rd Sem/2018/M

DIGITAL CIRCUITS

Full Marks - 70

Pass Marks – 28

Time - Three hours

The figures in the margin indicate full marks for the questions.

PART - A

(Compulsory)

Marks - 25

1. (i) Covert the following:

4

(a)
$$(15)_{10} = (.....)_2$$

(b)
$$(A10)_{16} = (.....)_2$$

(c)
$$(1001)_2 = (.....)_{10}$$

(d)
$$(11F)_{16} = (....)_{10}$$

- (ii) Answer the following questions: 1×10=10
 (a) Obtain the 2's compliment of 100100.
 (b) Represent the decimal number 12 in BCD code.
 - (c) Number of control inputs needed to implement 16:1 multiplexer is ———.
 - (d) Write down 2 bit gray code sequence.
 - (e) 1101 X 101 = ----
 - (f) Number of outputs present in 1:8 Demultiplexer is ——.
 - (g) A+ABC = ---
 - (h) Find out the min term, if the variables a,b,c, is talking values 0,1,0.
 - (i) Subtracted value of 10110 01101 is _____.
 - (j) Find out the max term, if the variables a, b, c, is talking values 0,1,1.
 - (iii) Write down whether the following statements are true/false: 1×11=11
 - (a) D-latch is a combinational circuit.
 - (b) x+y = y+x is aan example of commutative law.

- (c) Multiplexer is a data selector circuit.
 - (d) Half Adder can be used to add 2 bits.
- (e) 3 bit register can count upto 16.
 - (f) Asyncronous circuit uses external clk to ena be all the circuit.
 - (g) If two inputs of a xor gate is 1 then the output is 0.
 - (h) x + x' = 0.
- (i) ASCII code is an example of alphanumeric code.
- (j) (x'y'x')' = xyz.
 - (k) (x+x'y')(x+x'y) = x.

PART - B

Answer any three questions.

1. (i) Simplify using Boolean algebric method:

2×2=4

- (a) abc' + ab'c' + a'b'c + ab'c + a'bc
- (b) (x+y'+z')' + (x'y'z)' + xy

	a) $f(w,x,y,z) = \sum m(2,4,5,6,9,10,11,12,13)$
	(b) $f(a,b,c,d) = \sum m(0,1,2,3,4,5,6,12,13) + d(7,8)$
2.	(i) Use basic gates to implement Y= ab'(c+d) +ab (c'+d) 3
	(ii) Use NAND gate only to implement Y = ab + cd 4
	(iii) Prove that $(a+b+c)' = a' .b' .c'$ (1) 3
	(iv) Why NAND, NOR gates are called universal gate.
	(v) Write down distributive, commutative, associative law of boolean algebra. 3
3.	(i) Design a Full Adder. 6
	(ii) Write down truth table of a 2 to 4 Decoder.
	(iii) Write down funtion table of a 4:1 Multiplexer.
	(iv) Distinguish between combinational and sequential circuits.
	(v) Use Nor gate only to implement Y= a+b.

(ii) Simplify using K-map method: 5+6=11

4	(1) 7	
4.	(i) Explain the operation of S-R latch with circuit diagram, truth table.	
	(ii) Draw the logic diagram of a J-K latch.)
	(iii) Explain the operation of a master slave flip- flop with logic diagram, truth table. 6	
	(iv) Draw the logic diagram of a D latch. 2	
5.	(i) Describe the function of a 3 bit Counter with block diagram, timing diagram. 10	
	(iii) Design a 1:8 De-Multiplexer.	
6.	(i) Use 1's Complement method to subtract 1110 – 1001.	
	(ii) Describe the functions of a 3 bit Register with block diagram, timing diagram. 10	
	(iv) What do you mean by binary coding. Explain with example.	