CAI-303/DC/3rd Sem/2017/ M

DIGITAL CIRCUITS

Full Marks - 70

Pass Marks - 28

Time - Three hours

The figures in the margin indicate full marks for the questions.

Answer any five questions.

- 1. (a) Convert the following: 1×5=5
 - (i) $(101F)_{16} = (?)_{2}$
 - (ii) $(10F)_{16} = (?)_{10}$
 - (iii) $(10101)_2 = (?)_{16}$
 - (iv) $(102)_8 = (?)_{10}$
 - (v) $(10111)_2 = (?)_{10}$
 - (b) Perform addition:
 - (c) Subtract using 1's complement Method: 2 1010 - 1101.

-	(u)	Subtract using 2 s complement intenion:	
	Tritte.	1100 – 1011.	2
	(e)	Simplify using Boolean algebra:	4
		$f(x,y,z) = (x+y)(x+y'z)(x+xy)(x'+\overline{xy}$).
2.	(a)	Simplify using K-map method:	5
		$f(A,B,C,D) = \sum m(0,1,4,5,9,10,12,14).$	
	(b)	f(x,y,z) = x'y'z + xy'z + xyz + xyz'.	4
	(c)	$f(w,x,y,z) = \sum m(0,1,5,9,12,14) + d(2,3,10,11).$	5
3.	(a)	Use basic gates only to implement the belo Boolean function:	w 4
		$Y = f(a,b,c) = (a+b)cd + \overline{ab}$	
	(b)	Use only NAND gate to implement: Y = a + bc'	4
	(c)	Why NAND, NOR gates are called University Logic gates?	sal 2
	(d)	State and prove De-Morgan's Law.	4
4.	(a)	Design a 8 :1 Multiplexer.	5
	(b)	Design a 2 to 4 Decoder.	5
	(c)	State commutative, distributive, associative law of Boolean algebra.	ve 4
58/0	CAI-30	03/DC (2)	

- 5. (a) Convert the following into SOP form:

 1×2=2
 - (i) (a+b)(c+d)(a+b')
 - (ii) (a+b+c)(a+b+c').
 - (b) Explain the truth table of J-K latch along with its logic diagram. 5
 - (c) Distinguish between sequential and combinational logic. 2
 - (d) Explain the operation of a S-R latch with its logic diagram.
- 6. (a) Draw the block diagram of the following: 2×2=4
 - (i) 1:4 demultiplexer.
 - (ii) 2 bit ripple carry adder.
 - (b) Write down the truth table of the following: $2\times2=4$
 - (i) 4 to 2 Encoder
 - (ii) Full Subtractor.
 - (c) Explain the operation of a 2 bit asyneromous counter with timing diagram.

7. (a	(a) Design a Full Adder.	
(t	Design a 3 bit binary to gray	converter 5
(0	Use only NOR gate to imple	ement: 4
	Y=(a+b) (c+d) (e+f).	