CAI-301/PoE&EE/3rd Sem/2018/M

PRINCIPLES OF ELECTRICAL AND ELECTRONICS ENGINEERING

Full Marks – 70

Time - Three hours

The figures in the margin indicate full marks for the questions.

PART-A

(a) When a voltage of $v = V_m$ sin ω t is applied to a circuit, then current flowing through the circuit is $i = l_m \sin \omega t$. What is the value of power factor?

- (i) zero
- (ii) unity
- (iii) 0.5 leading

Write the correct answer:

1.

(iv) 0.5 lagging

(b) Kirchhoff's voltage law is concerned with

- (i) IR drops
- (ii) Battery emf
- (iii) Junction voltages (iv)Both (i) and (ii)

[Turn over

 $2 \times 10 = 20$

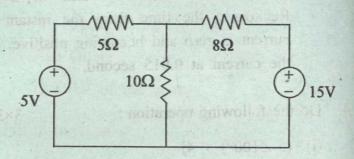
- (c) A lagging power factor implies that
- (i) Voltage is lagging the current
 - (ii) Current is lagging the voltage
 - (iii) Voltage and current are in same phase
 - (iv) None of the above
 - (d) The active power consumed by a resistance of 20Ω with a flow of 10 A current is
 - (i) 20 watt
 - (ii) 200 watt
 - (iii) 2000 watt
- (iv) 20000 watt
 - (e) What is the relation between energy and power?
 - (i) Energy = Power Time
 - (ii) Energy = Power × Time
 - (iii) Energy = Power + Time
 - (iv) Energy = Power ÷ Time

(f)	An ideal voltage source is the voltage source having			
	(i)	Very high i	nternal resistanc	
	(ii)	Zero interna	al resistance	iit) i ke and
	(iii)	5Ω internal	resistance	
Parxl	(iv)	None of the	e above	2. Fill in
(g)	Write the unit of power			
	(i)	Watt	(ii) Joule	
	(iii)		(iv) Second	
		ar grais la	principals to sinu.	
(h)	Writ	te the polar	form of -5 -5j	BTL (A)
	(i)	7.071∠0°	(ii) 7.071∠	135°
tage in	(iii)	7.071∠45°	(iv) 7.071∠	-135°
(i)	Win	ding resistan	ce of an ideal tra	ansformer is
	(i)	Very high		
	(ii)		poliskii) vii viii	
spiriod.	(iii)		to age for a re- customic fleet curt	
Riossde	(iv)	None of the	e above	
42/CAI-	301/I	PoE&EE	(3)	[Turn over

(ii) Sponge lead
(iii) Dilute sulphuric acid
(iv) All of the above
2. Fill in the blanks:
(i) Form factor is ratio of and
(ii) After doping semiconductor material is known as material.
(iii) The unit of electrical energy is
(iv) Transformer action requires magnetic flux.
(v) The standard frequency for AC voltage in India is
at a matient a feet in our tenester a smooth of the
PART-B
Answer any five questions from the following.
3. (a) When a voltage of $v = V_m$ sin ω t is applied to a circuit, then current flowing through the circuit is $i = l_m \sin(\omega t - 30^\circ)$. Write the phasors of voltage and current.
42/CAL-301/PoF&EE (4) 30(G)

(j) Active materials of a lead acid cell are:

(i) Lead peroxide


- (b) An alternating sinusoidal current of frequency 50Hz has a maximum value of 200 A. Reckoning the time from the instant the current is zero and becoming positive, find the current at 0.015 second.
- 4. Do the following operation:

3×3=9

- (i) $(5 \angle 100^{\circ}) \div 4j$
- (ii) $(5 \angle 10^{\circ}) + (-3-4j)$
- (iii) (-5 -5j) (5 ∠-30°)
- 5. (a) Write the assumptions for a transformer to be an ideal one.
 - (b) A 6300/210 V, 50 Hz, single phase transformer has per turn emf of about 9 volts. Find the number of high voltage and low voltage turns.
- 6. (a) Two coils connected in parallel across 100V supply mains take 10 A current from the line. The power dissipated in one coil is 600W. What is the resistance of the other coil?

4

(b) Calculate the current flowing through the 10Ω resistance of the following figure: 5

- 7. (a) Write the indications of a fully charged lead acid cell.
 - (b) Write the chemical changes during discharging and charging of a lead acid cell? 5
- 8. (a) Draw the circuit diagram of a half wave rectifier, together with its input and output waveforms.
 - (b) Calculate the values of collector current $I_{\rm C}$ and emitter current $I_{\rm E}$ for a BJT with emitter-to collector current gain $\alpha_{\rm dc}=0.98$ and base current $I_{\rm B}=100\mu{\rm A}$. Determine base to collector gain $\beta_{\rm dc}$ for the device.