# Total No. of printed pages = 7

# **END SEMESTER EXAMINATION-2021**

Semester: 5th (New)

Subject Code: CAI-504

### POWER ELECTRONICS

Full Marks – 70

Time - Three hours

The figures in the margin indicate full marks for the questions.

## Instruction:

The question paper consists of two parts: PART-A and PART-B both are compulsory.

## PART-A

### Marks -25

- 1. Determine the correct options for the following questions: 1×10=10
  - (i) Which is not a method of SCR turn on?
    - (a) gate triggering
    - (b) dv/dt triggering
    - (c) negative gate triggering
    - (d) light triggering

[Turn over

- (ii) The Schottky barrier diode has
  - (a) Semiconductor-semiconductor contact
  - (b) Metal-semiconductor contact
  - (c) Metal-metal contact
  - (d) None of the above

# (iii) IGBT is a

- (a) Current controlled device
- (b) Voltage controlled device
- (c) Phase controlled device
- (d) None of the above
- (iv) A single phase half wave controlled rectifier circuit has an R-load. A freewheeling diode is also in the circuit. When freewheeling diode is conducting the SCR
  - (a) is forward biased
  - (b) is reverse biased
  - (c) may be forwarded biased or reverse biased
  - (d) forward biased initially but reverse biased afterwards

|             |                                           | TRALLIBRAR.                  |
|-------------|-------------------------------------------|------------------------------|
| (v) Seco    | nd breakdown is                           | present in                   |
| (a)         | MOSFET                                    | (b) BJT                      |
| (c)         | IGBT                                      | (d) SCR                      |
|             | hyristor can be                           | protected against high       |
| (a)         | connecting an inductor in series with the |                              |
| (b)         | connecting a cap                          | pacitor in series with the   |
| (c)         | connecting an i                           | nductor in parallel with     |
| (d)         | connecting a cap<br>thyristor             | pacitor in parallel with the |
| (vii)Typ    | e A chopper ope                           | rates in                     |
| (a)         | 4th quadrant                              | (b) 2nd quadrant             |
| (c)         | 1st quadrant                              | (d) 3rd quadrant             |
| (viii) In   | verter converts                           | (4) (4)                      |
| (a)         | AC to DC                                  | (b) DC to DC                 |
|             | AC to AC                                  |                              |
| 14/CAI-504/ | PE(N) (3)                                 |                              |
|             |                                           |                              |

| 2    | State whether the following statements are true of false: $1 \times 10=10$ |
|------|----------------------------------------------------------------------------|
|      | (i) GTO can be turned off by applying a negative gate pulse.               |
|      | (ii) A TRIAC has 6 semiconductor regions.                                  |
|      | (iii) UJT is a three terminal device.                                      |
|      | (iv) The equivalent circuit of IGBT consists of two BJTs.                  |
| ( CE | (v) SCR remains turned on after removal of the gate signal.                |
| 8    | (vi) Type E chopper is a 2 quadrant chopper.                               |
|      | 4/CAI-504/PE(N) (4)                                                        |

(ix) The condition for step up operation for a step

(x) In a step down chopper, if Vs = 100 V and the chopper is operated at a duty cycle of 75%.

(b)  $0.5 \le \alpha \le 1$ 

(d)  $\alpha = 1$ 

(b) 75

up/step down chopper is

Find the output voltage.

(a)  $0 \le \alpha \le 0.5$ 

(c)  $\alpha = 0$ 

(a) 100

| (vii) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | bridge rectifier is<br>oltage of midpoint    |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| (viii |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | f a 3 phase bridge luct at one time.         |
| (ix)  | In a chopper circ<br>varied by varying                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ut voltage can be                            |
| (x)   | The state of the s | d rectifier will be<br>e rectifier if firing |
| Fill  | in the blanks:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1×5=5                                        |
| (i)   | BJT hasMOSFET. (high                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | oss compared to                              |

(ii) Holding current of SCR is \_\_\_\_\_

latching current. (higher/lower/equal)

(iii) \_\_\_\_\_ has negative resistance region in its I-V characteristics. (BJT/UJT/IGBT)

(iv) Cycloconverter converts \_\_\_\_\_ from one

frequency)

14/CAI-504/PE(N)

level to another level. (voltage/current/

[Turn over

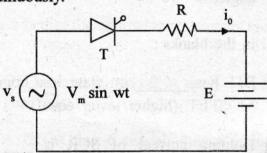
(v) Duty cycle of a chopper is \_\_\_\_\_

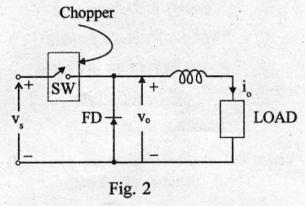
$$\left(\frac{T_{\text{on}}}{T_{\text{off}}} / \frac{T}{T_{\text{on}}} / \frac{T_{\text{on}}}{T}\right)$$

PART-B

Marks - 45

4 A DC battery is charged through a resistor R as shown in Fig. 1. Derive an expression for average value of charging current in terms of V<sub>m</sub>, E, R etc. on the assumption that the SCR is fired continuously.





Fig. 1

- (i) For an AC source of 230V, 50Hz find the value of average charging current if  $R = 8\Omega$  and E = 150V.
- (ii) Find the power supplied to the battery and that dissipated in the resistor.
- (iii) Calculate the supply pf.

14/CAI-504/PE(N)

(6)

5 For a type a chopper of Fig. 2, DC source voltage = 230V and load resistance= 10Ω. The voltage drop across the chopper is 2 V when it is on. For a duty cycle of 0.4 calculate 6



- (i) average and rms values of output voltage
- (ii) chopper efficiency.
- 6 What is an Cycloconverter? Explain the working principle of a single phase to single phase step up cycloconverter.
  10
- 7 Explain the working of a single phase halfwave converter drive for DC motor control. 8
- 8 Give the steady state analysis and draw the load voltage and current waveforms of a single phase bridge inverter for R-load, RL-load and RLC-load.

7+1+1+1+2=12