END SEMESTER EXAMINATION, NOVEMBER-2018

Semester - 5th (Regular)

Subject Code: CAI-506

ELECTRONIC CIRCUITS AND DEVICES - II

Full Marks-70

Time - Three hours

The figures in the margin indicate for the questions. full marks

Instructions:

- All questions of PART-A are compulsory
- Answer any five questions from PART-B

PART - A Marks - 25

- Fill (a) in the Precision rectifier is blanks : 20 circuit 1×10=10 with
- 9 Frequency of operation of active filters IS.
- 0 Band pass filter stop band has one pass band and

Turn over

	<u>a</u>
20	Band
	pass
	filter
	IS.
	called
	as
	-

- (e) For AC analysis of the circuit +Vcc and -Vcc are set to ——.
- (f) Frequency range of DC amplifiers ----
- (g) Tuned amplifiers are used to design
- (h) Q factor is ----
- (i) Power supply tries to provide in the circuit.
- (j) Regulation in shunt regulator is -----
- 2. Write true or false:

1×10=10

- (a) If out of phase input voltage are applied to each of differential amplifier input signal is referred as common mode signal.
- (b) Output resistance of differential amplifier is 2 Rc.
- (c) CMRR is differential gain to common mode gain.

- (d) Tank circuit uses inductor and capacitor.
- (e) Single tuned amplifier uses one parallel tuned circuit.
- (f) Tuned amplifier with poor output is called as potential instability.
- (g) Common mode gain is very low.
- (h) Adjustable voltage regulator improved line and load regulation.
- (i) Double tuned amplifier is used to decrease the bandwidth.
- (j) An ideal Op-Amp has large bandwidth.
- 3. Choose the correct answer:

(a) The negative feedback in an amplifier

- (i) Reduces the voltage gain
- (ii) Increases the voltage gain
- (iii) Does not affect the voltage gain
- (iv) None of the above

- 9 Application of SCR
- (i) Converter
- (ii) Inverter
- (iii) Chopper
- (iv) All of the above
- Common mode signals have
- (i) The same amplitude
- (ii) The same phase
- (iii) The same frequency
- (iv) All of the above
- **a** At high frequencies oscillator used is
- (i) Crystal oscillator
- (ii) LC oscillator
- (iii) RC oscillator
- (iv) None of the above
- e Limitation of active filter
- (i) Provide voltage gain
- (ii) Reduction in size
- (iii) Finite bandwidth
- (iv) None of the above
- 65/CAI-506/EC&D-II (R)

110(B)

PART-B

Marks - 45

- (a) Explain half-wave inverting precision rectifier with necessary waveforms
- 9 Give differences between active filters and passive filters
- 3 Design a low pass filter at cut off frequency of 16 KHz with passband gain 1.5
- (a) Draw the circuit diagram of differential amplifier using transistor.
- 9 An emitter biased dual input balanced output and voltage gain operating current and voltage for transistor Rc1=Rc2=3 KΩ and Re=3.9 KΩ. Calculate differential amplifier has Vcc = - Vee=15
- 6 analysis of dual input and unbalanced output Derive the equation of output voltage using AC differential amplifier.
- Draw and explain circuit diagram of inductive coupling single tuned amplifier with its frequency response.

65/CAI-506/EC&D-II (R)

(5)

- (a) oscillation. and derive the frequency and condition for Explain the operation of Wien bridge oscillator
- 3 bridge oscillator to operate at a frequency of Calculate the value of C1=C2 for the Wien 15 KHz with R1=R2=30 KΩ
- (a) in the following configuration: Draw the block diagram of feedback amplifier
- (i) Voltage series feedback
- (ii) Current shunt feedback
- 9 Give amplifier. in increasing stability? the How does negative feedback help advantages of negative feedback
- What is adjustable voltage regulator? Derive the adjustable voltage regulator expression for the output voltage for LM317 2+7=9
- Write short notes on following:
- 5+4=9

(ii) Phase shift oscillator.

 Ξ

SCR