END SEMESTER EXAMINATION, NOVEMBER-2018

Semester - 5th

Subject Code: CAI-501

CONTROL SYSTEMS

Full Marks-70

Time - Three hours

The figures in the margin indicate full marks for the questions.

Instructions:

- All questions of PART-A are compulsory.
- Answer any five questions from PART

PART - A Marks - 25

1. Fill in the blanks:

1×10=10

- (a) the The number of poles at the TYPE of a transfer function. gives
- 6 The number of transfer function poles gives the of a

[Turn over

(0) 11 501103	(h) The first time constant of a system is also denoted as percentage of the full scale output.	(g) The equivalent analogy of mass in electrical voltage system is	(f) The Bode plot is a plot of magnitude and also versus frequency on the log scale.	(s+2)(s+3)(s+2s+2). Determine the Dominant Roots	(e) The characteristic equation of a system is given below:	(d) A minimum phase transfer function has poles and zeroes located on the side of "s" plane.	G(s) H(s) = 20 (s + 0.25)/(s + 0.5) (s + 10) $\omega =$ due to a zero.	(c) The corner frequencies for a given transfer function are:
					•			
60/CAT 501/CS	to Laplac (iv) The ratio to Laplac		(iii) ½ (c) The transfer (i) The ratio	The steady st (i) 1	(iii) 2/s ² + 4s (b) A system ha 1/2 (s + 0.5) i	(a) The Laplace (i) 4/(s+2) ²	E	(i) are component fo

	3
component for error detection.	are a preferred choice as a control

- mal to a first order system is ndy state value of LAG for a Ramp
- place transform of e-21 sin 2t is:

(i)
$$4/(s+2)^2+4$$

(ii)
$$4/s^2 + 4$$

ii)
$$2/s^2 + 4s + 8$$

(iv)
$$2/s^2 + 4$$

0.5) is subjected to a Unit Step Input. m having transfer function G(s) =

ady state value of the output is

- isfer function is defined as:
- ratio of input to output
- ratio of output to input
- aplace transform of output ratio of Laplace transform of input
- aplace transform of input ratio of Laplace transform of output

- (d) The error detector element in a control system gives:
- (i) The sum of reference signal and feedback signal
- (ii) The sum of reference signal and error signal
- (iii) The difference of reference signal and feedback signal
- (iv) The difference of reference signal and output signal
- (e) The velocity error coefficient as s → 0 is given by:
- (i) Lim G(s) H(s) (ii) Lim s G(s) H(s)
- (iii) Lim 1/G(s) H(s) (iv) Lim s/G(s) H(s)
- (f) The location of the closed loop conjugate pair of pole on jw axis indicates that the system is
- (i) Stable
- (ii) Unstable
- (iii) Marginally stable (iv) Critically stable
- The formation
- 4

60/CAI-501/CS

- (g) The roots of characteristics equation are same as:
- (i) Closed loop zeroes
- (ii) Closed loop poles
- (iii) Open loop zeroes
- (iv) Open loop poles
- (h) The number of sign changes in Routh Hurwitz Table in the first column element denotes:
- (i) The number of poles in left hand side of s-plane
- (ii) The number of zeroes on the imaginary axis (jw axis)
- (iii) The number of roots in right hand side of s-plane
- (iv) The number of poles and zeroes in right hand side

- The initial slope of the Bode plot for a transfer function having no poles at the origin
- (i) 10 db/decade (ii) 10 db/decade
- (i) 0 db/decade
- (iii) 20 db/decade

The frequency at which the magnitude of the

Bode plot crosses "0" db axis is termed as

- Natural frequency
- (ii) Phase crossover frequency
- (iii) Gain crossover frequency
- (iv) Corner frequency
- w. Match the following

5×1=5

- Oscillatory (Sustained oscillation)
- (a) <<1
- (ii) Critical damping
- (c) \(\ze = 0

(b) <>1

- (iii) Oscillatory with decreasing amplitude

 $(d) \zeta = 1$

- (iv) Over damped
- 5= un-
- 60/CAI-501/CS Oscillatory with increasing amplitude
 - (e) defined

Marks - 45

PART-B

loop gain, G(s) = K/s(s+6), feedback gain A closed loop control system is given by open H(s) = 0.2, damping ratio $\zeta = 0.7$.

condition and calculate the settling time, peak Determine the value of K to satisfy the above time, maximum overshoot. 3×2=6

- Sketch the Root Loci of open loop transfer function given by
- G(s) H(s) = K(s+3)/s(s+2)
- comment on its stability: Discuss the root location of the polynomial and

(a)
$$s^7 + 4s^6 + 5s^5 + 2s^4 + 4s^3 + 16s^2 + 20s + 8 = 0$$
.
 $1 \times 5 = 5$

(b)
$$s^5 + s^4 + 2s^3 + 2s^2 + 11s + 10 = 0$$
. $1 \times 4 = 4$

7. Construct the Bode plot for a unity control system having feedback

$$G(s) = 2000/s(s+1)(s+100).$$

over frequency Calculate the phase margin, gain margin, cross- $3 \times 1 = 3$

60/CAI-501/CS

9

Turn over

- 00 Write short notes on:
- Comparison between open loop and close
- (b) Field controlled DC servo motor. 1×5=5
- 9. Find the transfer function of the two looped network using Masons gain formula. 1×9=9

10. Reduce the block diagram and find the overall transfer function of the system

Find the overall transfer function Vo(s)/Vi(s). 1×9=9

- 11. Explain feedback control and discuss its effect on
- (a) Overall gain
- (b) External disturbances

3×3=9

12. Find the transfer function C(s)/R(s) of the signal flow graph using Mason's gain formula.

60/CAI-501/CS

9

110(B)