El/Co/It-403/DE/4th Sem/2018/M

DIGITAL ELECTRONICS

Full Marks - 70

Time - Three hours

The figures in the margin indicate full marks for the questions.

Answer both Part A and B.

PART - A Marks - 25

3	(iv)	(III)	(ii)	Θ	ПП
(v) In K-map adjacent pair eliminates variables.	(iv) An inverter is also known as	(iii) A NAND gate acts asAND gate.	(ii) ASCII is an codes.	(i) In octal system there are digits.	. FIII III IIIC DIAIKS . IXI
	gate.	ite.		ts.	0.1-0.1×1

(vi) A + A

Turnover

170/EI/Co/ft-403/DE (2)	(viii) NAND and NOR gates are univeral gates.(ix) Gallium arsenide is used in LEDs.(x) Zero suppression is not used in practice.	(vi) A. A = 1(vii) In hexadecimal system the base is 16.	(v) A combinational logic circuit has an output of 1 or 0.			 State whether the following are true or false: 1×10=10 In binary number system, the base is 2. 	6	(viii) Multiplexer is a logic circuit.
170/El/Co/lt-403/DE (3) [Tumover	1. Convert the following: 2×3=6 (i) 100101 ₂ =	PART – B Marks – 45	(e) Power consumption of LCD is (i) Small (ii) Very small	00	(i) Sum of product	(i) Medium (ii) Low (iii) High (c) A min terms Boolean expression is known as	(a) A NAND gate acts as AND gate. (i) NOT (ii) OR (iii) XOR gate (b) If both inputs of XOR gate are high, the	 Choose the correct words from those given within blanks.

[Turn over

- Answer the following questions:
- (a) Answer any two:

2×3=6

- What is meant by I's complement and 2's complement?
- Ξ What is floating point representation?
- (iii) Draw a NOT gate. Write its truth table.
- 9 Write short notes on any two:

2×3=6

- Multiplexer
- (ii) Half adder
- (iii) LED and LCD.

Answer any three questions

- 33 (a) Using K-map minimize the function: $f(A,B,C,D) = \Sigma m (0,1,2,3,5,7,8,9,11,14)$
- 9 Draw the logic diagram for the above minimize expression.
- (a) NOR, NAND, XOR Define with symbol and truth table.
- 9 Draw logic circuit for the expression $Y = ABC + ABC + \overline{A}B\overline{C}$

- S (a) Differentiate between the functions of multiplexer and de-multiplexer.
- 9 Draw logic circuit of a 4:1 multiplexer and explain its working.
- 6 (a) State and prove De Morgan's theorems.

U

- 9 (i) A + 0 = AWhat is duality theorem? Find dual of
- (ii) $A \cdot A = 0$

4