Co-401/DSUC/4th Sem/2018/M

DATA STRUCTURE USING C

Full Marks - 70

Pass Marks - 28

Time - Three hours

The figures in the margin indicate full marks for the questions.

Marks - 25

1. State true or false:

- 1×5=5
- Ξ AVAIL = NULL and there is an deletion. Overflow will occur with linked list when
- Ξ different data types. Two elements of the same array cannot be of
- Stack cannot be implemented using linked
- 3 its memory requirement Space complexity of an algorithm indicates
- list. A graph may be represented using adjacency

135/Co-401/DSUC	(iii) Linear data structure	(ii) String	(i) Leaf node	X	3. Match words and the nearest in mea column Y.	(v) In D-queue ins	(iv) refe operator sym operands.	(iii) Aqu strictly.	(ii) In a pointers.	(i) Recursion uses structure.	2. Full up the blanks:
(2)	(c) All leaves are at the same level	(b) Frequently used for maintaining polynon	(a) A kind of binary tree	Y	Match words and phrases in column X with the nearest in meaning of words and phrases in column Y. 1×5=5	In D-queue insertion/deletion may be carried out at	refers to the notation in which the operator symbol is placed before its two operands.	queue does not follow FIFO rule	list, each node has two	as an internal data	1×5=5

				(v) Header Linked list	(iv) Degree of vertex	X
(i) Zero children	(h) Elements form a sequence	(g) A finite sequence of zero or more character	(f) Static memory location	(e) Number of edges incidents on the vertex	(d) Elements may be inserted or deleted only	Y

- Choose the correct alternative : 1×10=10
- (i) Which data structure is used in breadth first search of a graph to hold nodes?
- (a) Stack
- (b) Queue
- (c) Tree
- (d) Array
- (ii) In the adjacent. vertex's descendants before we move to an traversal we process all of a
- (a) Depth first
- (b) Breadth first
- (c) Width first
- (d) Depth limited

- 5	
	(II)
more than	In general,
comparisons.	the binary search method n
	eeds no

- (a) [log2n]-1
- (b) [logn]+1
- (c) [log2n]-
- (d) [log2n]+1
- (iv) The property of binary tree is
- (a) The first subtree is called left subtree
- (b) The second subtree is called right subtree
- (c) The root cannot contain NULL
- (d) The right subtree can be empty
- (v) Which of the following statement is false?
- (a) Arrays are dense lists and static data structure
- (b) Data elements in linked list need not be stored in adjacent space in memory
- (c) Pointers store the next data element of a list
- (d) Linked lists are collection of the nodes that contain information part and next pointer

- (vi) The way in which the data item or items are logically related defines
- (a) Storage structure
- (b) Data structure
- (c) Data relationship
- (d) Data operation
- (vii) The average number comparisons done by sequential search is
- (a) (N/2)+1
- (b) (N+1)/2
- (c) (N-1)/2
- (d) (N+2)/2
- (viii) Which one of the following is a Linear data structure that solve the
- (a) Lists
- (b) Linked List
- (c) Tree
- (d) Queues

200 (P)

3

- (ix) Prefix notation is also known as
- a) Reverse Polish Notation
- b) Reverse Notation
- (c) Polish Reverse Notation
- (d) Polish Notation
- (x) Quick Sort algorithm is an example of
- (a) Greedy approach
- (b) Dynamic Programming
- (c) Back tracking
- (d) Divide and conquer.

SECTION - B

Marks - 45

- 5. (a) Write the algorithm to sort a list of n elements using bubble sort.
- (b) Suppose P and T are strings with lengths R and S respectively and are stored as arrays with one character per element. Write an algorithm to find INDEX of P in T (Pattern matching algorithm).

5. (a) A binary tree T has 9 nodes. The inorder and preorder traversal of T yield the following sequence of nodes:

6

Inorder: EACKFHDBG

Preorder: FAEKCDHGB

Draw the tree.

- (b) Suppose Q is an arithmetic expression written in infix notation. Write an algorithm to find the equivalent postfix expression P. 4
- 7. (a) Define linked List. Write an algorithm for inserting node at the beginning of a linked list.
- (b) Suppose the following list of letters is inserted in order into an empty binary search tree: 3+2=5

J, R, D, G, T, E, M, H, P, A, F, Q

- (i) Find the final tree T
- (ii) Find the inorder traversal of T.

3

- Write short notes on any three:
- 5×3=15

- (i) Quick Sort
- (ii) Binary Search
- (iii) Priority Queue
- (iv) Breadth First Serch
- (v) B-tree
- (vi) Recursion.