END SEMESTER EXAMINATION, NOVEMBER-2018

Semester: 3rd

Subject Code: FPT-302

ELEMENTS OF FOOD ENGINEERING-I

Full Marks - 70

Time - Three hours

The figures in the margin indicate full marks for the questions.

Instructions:

- All questions of PART-A are compulsory.
- 2. Answer any five questions from PART-B.

PART - A

Marks - 25

Fill in the blanks:

1×10=10

- **a** 586K (Kelvin) is equal to
- 9 The SI unit of thermal conductivity
- (c) The SI unit of heat flux is

[Turn over

76/					2						7		
FPT-	(d)	©	6	(a)	Wri	9	Θ	E	69	3	0	(a)	
76/FPT-302/EoFE-I (2)	(d) Heat engine and heat pump are same.	(c) Constant temperature process is known as isothermal process.	(b) Stefan Boltzmann Law governs heat transfer by conduction.	Evaporator, compressor, condenser and expansion valve belong to Carnot cycle.	Write true or false:	(j) The formula of R134a is	The specific heat at constant pressure (C _p) is . mathematically expressed as	When pressure is constant in a thermodynamic process then it is known as process.	Triple point of pure water is at K temperature and Pa pressure.	Carnot engine is heat engine	(e) No net change of heat indicates	process is the constant volume	
5/FPT		3	€		(a)	3. Ch	9	Θ	E	(g)	9	(e)	
76/FPT-302/EoFE-I	(iii) Density		(iii) Densit	(i) Pressu	(a) Which of property of	Choose the con	Work is th	Nusselt no convective	(h) Liquid am purpose.	(g) Heat pump	Universal prom Cp au	(e) Temperatur are driving	

- friving force of conductive heat transfer. perature gradient and thickness of slab
- ersal gas constant cannot be calculated Cp and Cv.
- pump and refrigerator are same.
- ose. id ammonia is used in refrigeration
- selt number is not associated with ective heat transfer.
- is thermodynamic path function.
- he correct answer:

1×5=5

- erty of a thermodynamic system? ch of the following is the extensive
- Pressure
- (ii) Volume
- Density
- (iv) Temperature
- ble of a thermodynamic system? ch of the following is the intensive
- ressure
- (ii) Temperature
- Density
- (iv) All of these

3

- (c) Rate of heat transfer is
- inversely proportional to the temperature gradient
- \equiv directly proportional to the normal surface area
- (iii) inversely proportional to the thickness of flows the plain slab through which the heat
- (iv) None of these
- (d) Thermodynamic state functions are
- (i) Internal energy (ii) Pressure
- (iv) All of these

(iii) Volume

- <u>e</u> Which of the following is not a exchanger? heat
- (i) Boiler
- (ii) Condenser
- (iii) Pump
- (iv) Car radiator

PART - B

Marks - 45

- (a) State First Law of Thermodynamics
- 76/FPT-302/EoFE-I 4

- (b) Give the mathematical expression of it.
- (c) How work done can be calculated from First Law of Thermodynamics?
- 5 (a) State Zeroeth Law of Thermodynamics. 2
- 9 Define enthalpy and thermodynamic system. entropy of
- 3 State and explain Second Law Thermodynamics. of
- 6. (a) What is heat engine?
- (b) What is heat pump?
- Prove that the thermal efficiency of a heat of heat absorbs or supplied to the heat engine heat reservoir or sink and Q = total amount of heat released from heat engine to external engine $\eta = 1 - Q_2/Q_1$, Where $Q_2 = \text{total amount}$ from an external reservoir or source
- 7. (a) State and explain Fourier's Law of heat transfer
- (b) Give the mathematical expression of thermal resistance and thermal conductance.

76/FPT-302/EoFE-I

(5)

Lium over

- (c) Find the rate of heat loss through a stainless-steel slab 10cm thick which is maintained 120°C on hot side and 50°C on the cold side. The thermal conductivity of steel is 16.37w/m/°C.
- 8. (a) What is Nusselt number? Draw the concurrent flow and counter current flow heat exchanger. Draw also the temperature profile (T-X) diagrams of concurrent and counter current flow heat exchanger.
- (b) A dilute orange juice is heated in a double pipe heat exchanger from 28°C to 75°C by heat exchanging with hot water which enters the heat exchanger in counter current direction and is cooled from 95°C to 85°C. Calculate the log mean temperature difference (LMTD).
- (a) Draw a shell and tube heat exchanger with component parts.
- (b) A fluid of temperature 15°C is flowing over a flat surface maintained at 152°C. If the cross-sectional area of the flat surface is 0.20m² and the rate of heat transfer from the flat surface to the fluid is 800W, calculate the convective heat transfer coefficient. 5

- 10. (a) Define absorptivity, transmissivity and reflectivity of the body. What are their correlations?
- (b) A piece of meat cube is kept in a deep freezer maintained at -18°C. Calculate the radiative heat transfer if the meat cube is at 25°C and has an average area of 0.045m². The emissivity of the meat cube is taken as 0.82. Take Stefan-Boltzmann's constant = 5.67×10⁻⁸w/m²k⁴.
- 11. (a) Explain Carnot Cycle mathematically.
- (b) Prove the following relationship:

$$(COP)_p = 1/(COP)_E = (COP)_R + 1$$

of fish is -2.2°C and the moisture content of fish is 82%. The thickness of the fish block is 0.0508m and the convective heat transfer coefficient (h) is 20w/m²K. Calculate the freezing time in hour required to freeze the fish blocks. Assume density of unfrozen fish as 1050kg/m³, thermal conductivity of the frozen fish (k) as 1.025w/mK, latent heat of water to ice as 335kJ/kg and shape factors for infinite slab, P = 1/2 and R=1/8.

3