53 (IE 810) VTIS

2018

VIRTUAL INSTRUMENTATION

Paper: IE 810

Full Marks: 100

Time: Three hours

full marks for the questions. figures in the margin indicate

Symbols have their usual significances.

Answer any five questions.

- (a) Instrumentation? What is Virtual Instrumentation? What the advantages of Virtual
- 6 rate. Define sampling theorem and sample
- 0 Draw and explain the dual slope type ADC or R-2R type 4-bit DAC.

- (a) Write a VI program to convert degree to radian and radian to degree.
- (b) What is Sub VI? Explain how the Sub VI can be reused to solve a problem.
- (a) Convert a 4-bit binary number to a
 4-bit Gray code using VI program. 8
- (b) A first order response is described by

the equation
$$y(t) = (y_f - y_i) 1 - e^{\frac{-t}{t}}$$

where y_i is initial value of y at t=0, y_f is final value of y at t= infinite and t is time constant. Mentioning the different steps, create a VI that will solve the value of y for a specified time.

- (a) Explain the FOR Loop and WHILE Loop.
 Give one example for each case. 10
- (b) Create a VI to find the sum of first 20 natural numbers using FOR Loop. 10
- (a) What is Data Acquisition System (DAS)? Draw and explain the computer based DAS.

- (b) Explain how DAS can be designed and developed using Labview. Mention at least four important parameters that to are be set during VI program.
- 6. (a) What are the features of RS 485 and RS 422?
- (b) Mention and explain the different buses.
- (c) Explain in detail about the different USB standards. 8
- 7. (a) Explain how two-dimensional arrays can be generated in Labview. 10
- (b) Write a VI program to simulate a PI controller.
- 8. Write short notes on **any four** of the following:
- (a) Array and clusters
- (b) cRIO and myRIO devices
- (c) Weighted resistor type 4-bit DAC
- (d) Role of range and resolution in DAS
- (e) Shift register
- f) Feedback nodes.

N