53 (IT 715) ARIN

2018

ARTIFICIAL INTELLIGENCE

Paper: IT 715

Full Marks: 100

Time: Three hours

The figures in the margin indicate full marks for the questions

Answer any five questions.

- (a) What is grid-space world?
- 6 to sequences. explain the two ways to assign utilities What 1s stationary preference
- 0 Bursn without exceeding cost c. estimates by more than cost c, then A* problem? Prove that, if h never over to a suboptimal solution on a particular 8-puzzle game problem. How can it lead Define h returns an optimal solution a heuristic function for the

(a) Which one agent will move in the direction of south by using the production system based on Boolean notation?

- (b) Prove each of the following statements:
- (i) Breadth-first search is a special case of uniform-cost search.
- (ii) Breadth-first search, depth-first search and uniform-cost search are special cases of best first search.
- (iii) Uniform-cost search is a special case of A* search.
- (c) What is the difference between Greedy based Best First Search (BFS) and A* BFS?

- (d) What is Dynamic Bayesian Network (DBN)? How is dynamic decision network (DDN) different from DBN? Explain DDN with generic structure with its solution in diagram.
- Write down the A* Algorithm and find the shortest path from S to G using uninformed search algorithm.

4. (a) Write down the full resolution rule for sentences in implicative normal form.

W

- (b) Represent the following sentences in first-order logic, using a consistent vocabulary (which you must define): 15
- (a) Every person who save money is smart.
- (b) No student buys a car.
- (c) There is a faculty who teaches GATE coaching only to students who are interested.
- (d) There is a barber who shaves all men in town who do not shave themselves.
- (e) A person born outside the INDIA, one of whose parents is a INDIA citizen by birth, is a INDIA citizen by descent.

0

Standard logical equivalences:

	Ü	randar a regreat	orginard logical characters.
$(\alpha \wedge \beta)$	81	$(\beta \wedge \alpha)$	(commutativ ity of ^)
$(\alpha \lor \beta)$	18.	$(\beta \vee \alpha)$	(commutativ ity of v)
$((a \wedge \beta) \wedge \gamma)$	ш	$(\alpha \wedge (\beta \wedge \gamma))$	(associativ ity of A)
$((a \wedge \beta) \vee \gamma)$.00	$(a \lor (\beta \lor \gamma))$	(associativ ity of v)
$\neg(\neg a)$	st.	a	(double negation eliminatio n)
$(a \Rightarrow \beta)$	11	$(\neg \beta \Rightarrow \neg a)$	(contraposi tion)
$(\alpha \Rightarrow \beta)$		$(\neg \alpha \lor \beta)$	(implicatio n eliminatio n)
$(\alpha \Leftrightarrow \beta)$	m	$((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha))$	(biconditio nal eliminatio n)
$\neg(\alpha \land \beta)$	10	$(\neg \alpha \lor \neg \beta)$	(De Morgan' s Law)
$\neg(\alpha \lor \beta)$	10	$(\neg \alpha \land \neg \beta)$	(De Morgan's Law)
$(\alpha \wedge (\beta \vee \gamma))$	0	$((\alpha \wedge \beta) \vee (\alpha \wedge \gamma))$	(distributi vity of < over v)
$(\alpha \vee (\beta \wedge \gamma)) =$		$((\alpha \lor \beta) \land (\alpha \lor \gamma))$	(distributi vity of v over x)

Decide whether each of the following sentences is VALID, SATISFIABLE, or neither. Verify your decisions using truth tables or the equivalence rules.

CI

- (a) $Disaster \Rightarrow Flood$
-) Disaster => Raining \cap Flood
- (c) Disaster v Raining v ¬ Flood
- (d) $((Raining \land Disaster) \Rightarrow Flood) \Leftrightarrow ((Raining \Rightarrow Flood) \lor (Disaster \Rightarrow Flood))$ (e) $((Disaster \Rightarrow Flood) \Rightarrow (((Disaster \land Food Demand) \Rightarrow Flood))$
- (**Hint**: Given Truth Table (Standard logical equivalences). The symbols α , β and γ stand for arbitrary sentences of propositional
- Maximize the function $f(x) = x^2$ over the range of integers from 0...63. Apply a genetic algorithm to solve this problem. Show at least the possible solution (i.e. near to termination criteria).

(Note: x represent six-digit unsigned binary integers, f(x) value itself a fitness solution, Coding in binary form having 6-bit string length (represent 64 numbers, Four chromosomes 101101, 111010, 110100, 110101) as initial populations, Decode individual for further evaluation (like fitness i.e. x^2 (011001 = 25; 25^2 = 625), probability, random number, crossover and mutation).

OI