53 (IE 712) CCPR

2018

COMPUTER CONTROL OF PROCESS

Paper: IE 712

Full Marks: 100

Time: Three hours

full marks for the questions. figures in the margin indicate

Answer any five questions.

- (a) functions of different components. Draw the block diagram of a digital control system and explain the
- 6 controller. with continuous process and digital Draw and analyze the loop structure
- (a) functions of different components. Control System (DCS) and explain the Draw the block diagram of a Distributed

10

6 Explain with a schematic diagram, the operation of Supervisory Control And Data Acquisition System (SCADA)

ω (a) explain the function of each block. Draw the block diagram of PLC and

(6) What are the advantages of a PLC over relay based circuits?

0 Convert the following logic gate to PLC ladder diagram (I-Input, O-Output)

(d) A fan is to be controlled from three containing one START and one STOP different locations. Each location button. Write a PLC ladder diagram.

> 4. (a) For the following system, find the OLTF z-domain : (Open Loop Transfer Function) in

where
$$G_p = \frac{5}{8}$$
 and $ZOH = \frac{1 - e^{-st}}{s}$.

- (b) What are the different algorithms used rule for integration. Pl controller using forward rectangular controllers? Derive the algorithms for for implementation of analog
- 0 Derive the difference equation of u(k)change in output at third sample lor the rule for integration term. Find the $e_1 = 1$, $e_2 = 2$ and $e_3 = 3$. time = 2sec-1, derivative time = 6sec following data: $K_P = 2$, T = 0.4 sec, reset us. e(k) for PID Control using trapezoidal
- Ċ (a) State and prove Final Value Theorem function value of f(k) using FVT for a given (FVT) for Z-transformation. Find the final

$$F(z) = \frac{1.792 z^2}{(z-1)(z^2 - 0.416 z + 0.208)}.$$

53 (IE 712) CCPR/G

(b) Using the Z-transformation, find X(z)

when
$$x(k) = \left(\frac{1}{5}\right)^{n}$$
 for $k = 0, 1, 2, 3...$

following difference equation Find the closed loop solution the

$$X(k+2)+3X(k+1)+2X(k)=0;$$

Given that $X(0)=0$ and $X(1)=1$.

- 0 (a) Derive Controller Algorithm. Using this controller for a digital control system. the generalized equation of equation, derive Dahlin's
- 6 sampling time, T = 1 sec.constant of 5sec. the system to achieve a closed loop time Design a Dahlin's digital controller process The open loop transfer function of S given by Assume that the $G_s(s) = -$ 10s + 1for
- following : Write short notes on any two of 2×10=20 the
- (a) Stability of discrete data system
- (9) Tustin's method for signal discretization
- (c) Jury's Stability test
- (d) ladder diagram Realization of 4:1 multiplexer using PLC
- (e) Direct digital control.