53 (IE 703) FOLI

2018

FIBER OPTION AND LASER INSTRUMENTS

Paper: IE 703

Full Marks: 100

Time: Three hours

The figures in the margin indicate full marks for the questions.

Answer any five questions.

1.

2×10=20

- (i) What are skew rays?
- (ii) Define dark current noise.
- (iii) What is Rayleigh scattering?
- (iv) in a PIN? What is the function of intrinsic layer
- (0) What is population inversion?
- (vi) How the Fresnel loss is compensated in a fiber optic connector?

- (vii) What is the difference between a splice and a connector?
- (vii) Define quantum efficiency.
- (ix) Which type of light source would you think is more prevalent in a fiber optic communication? Why?
- (x) What are the two types of losses in an optical fiber?
- (a) How would you classify optical fiber based on the variation in the composition of the core material?

2

- (b) What do you understand by 'Numerical Aperture' and 'Acceptance Angle' of a fiber? Derive the expression for them.
- (c) Define the terms: Phase and group velocity.
- (d) The relative refractive index difference between core and cladding of an optical fiber is 5%. Calculate the NA for the fiber when the core R.I. is 1.50. Also estimate the critical angle at the core cladding interface.

- (a) State the merits and demerits of single mode fiber.
- (b) Name the five different types of intrinsic losses that appear in a fiber joint.
- (c) A four part directional coupler has 4:1 splitting ratio and excess loss equals to 20dB, directionality equals to 10dB.
- (i) What fraction of input power goes to each of the port?
- (ii) Compute the throughput loss and excess loss.
- (iii) Compute the loss due to radiation and scattering.
- (d) Specify the basic components of a LASER.
- (a) What is a LIDAR? Describe the main components of a LIDAR system. Make a comparison between LIDAR and RADAR.
- (b) What is the role of Helium in He-Ne LASER? Explain the operating principle of He-Ne LASER. How this LASER is superior to ruby LASER? 2+4+2=8

53 (IE 703) FOLI/G

- (c) A Faraday current sensor consists of 30 loops of a single mode fiber (silica) of radius 62·2μm bent around a circular forma of radius 20cm. What will be the Faraday rotation for a current of 1Amp at 0·633μm?
- (a) Differentiate between intrinsic and extrinsic fiber optic sensors with examples.
- (b) Explain the construction, working principle of ruby LASER. 6
- (c) Describe with suitable diagram, how a LASER distance meter is advantageous than ultrasonic distance meters.
- (d) State the applications of directional coupler. 2
- (a) List out the properties of LASER, which make it different from ordinary light.
- (b) Differentiate between spontaneous and stimulated emission with suitable diagrams. Which of them is applicable to LASER action and why?
- (c) Why we prefer 4-level LASER over 3-level LASER even if its efficiency is low? 3
- (d) State the important features of Nd:YAG LASER compared to ruby LASER. 5

- (e) A photon with an associated wavelength of 980nm upon interaction with an atom at a particular energy level E_1 is able to promote that atom to an energy level E_2 ; where $E_2 > E_1$. Estimate the difference between these two energy levels.
- 7. (a) What is the advantage of fiber optic gyroscope over the conventional mechanical gyros? Explain the principle of operation of fiber optic gyroscope based on sagnac effect.

 2+8=10
- (b) How does a hologram differs from a photograph? Are all the holograms same? Explain the recording and reconstruction process of reflection hologram.

 3+1+6=10
- 8. Write short notes on: (any four) 5×4=20
- * Fiber optic current sensor
- * Mach-Zehnder Interferrometric sensor
- * Q-switching
- LASER doppler velocimeter
- Graded-index fiber

OI

53 (IE 703) FOLI/G