53 (FPT 712) FRTC

2018

FERMENTATION TECHNOLOGY

Paper: FPT 712

Full Marks: 100

Time: Three hours

The figures in the margin indicate full marks for the questions.

Answer any five questions out of seven.

Discuss the following:

Fermentation

Opstream process

Downstream process

Maintenance coefficient

Cold sterilization

"Productivity" in CSTR.

of Fcd batch culture mentioning the advantages. Why Fcd batch culture is required?

A microbial strain obey Monod model:

$$\frac{dx}{dt} = \frac{\mu_{max}[s][x]}{K_s + [s]},$$

where $\mu_{max} = 0.7h^{-1}$, $K_s = 5g/l$, cell yield

 $Y_{x/s} = 0.65$.

The microorganism is cultured in a CSTR. The feeding rate and substrate concentration of inlet are 500l/hr and 85g/l respectively. The substrate concentration of outlet stream is 5g/l. Calculate size of fermenter and cell concentration of outlet stream at steady state.

- (a) Derive residence time (r) in immobilized enzyme plug flow reactor.
- (b) Why agitation is required in suspension microbial culture?
- (c) How O₂ is transferred from air to microbial cell in suspension culture?
- (d) How mixing pattern can be improved in fermenter?

- (e) Write SI unit of mass transfer coefficient, diffusion coefficient, volumetric oxygen transfer coefficient.
 8+3×4=20
 (a) Amylase enzyme was assayed at initial substrate concentration of 10⁻⁵ moles.
 (b) Write SI unit of mass transfer coefficient, with the coefficient and the coefficient.
- (a) Amylase enzyme was assayed at initial substrate concentration of 10^{-5} moles. $K_m = 2 \times 10^{-3}$ moles. After one minute, 2% substrate was converted to product. What % of substrate will be converted at the end of 3min? If the initial substrate concentration would be 10^{-6} moles, what % of substrate will be converted to product after 3min? Calculate V_{max} with the same enzyme concentration been used.
- (b) Immobilized lactose is used to hydrolyse lactose in dairy waste to glucose and galactose. The enzyme is immobilized in resin particles and packed into a 0.5m³ column. Effectiveness factor ~1, $K_m = 1.32 \, kg/m³$, $V_{max} = 45 \, kg/m³h$ lactose concentration in feed stream to packed bed reactor is 9.5kg/m³. 98% substrate conversion is desired. The condition for 310 days per year. Calculate:

At what flow rate should the reactor be operated ?

How many tonnes of glucose are produced per year?

10+10=20

53 (FPT 712) FRTC/G

- Define the following :
- 4×5=20

Michaelis-Menten Equation

Effectiveness factor

Damkohler Number

Thiele Modulus

6. Discuss briefly about the following downstream processing: 4×5=20

Filtration

Absorption

Adsorption

Extraction

Chromato graphic separation.

- 7. Briefly discuss about fermentative production of the following and their application/use: (any three)
- (a) Production of organic acid (citric acid)
- (b) Production of polysaccharides (Dextran, Xanthan)

- (c) Production of amino acids (glutamic acid and lysine)
- (d) Production of vitamin C (food additive)
 (Ascorbic acid)
- (e) Fermentative production of alcoholic beverage (Beer)
- (f) Production of enzymes important in food industry.

CI