53 (EC 714) DIPR

2018

DIGITAL IMAGE PROCESSING

Paper: EC 714

Full Marks: 100

Time: Three hours

The figures in the margin indicate full marks for the questions.

Answer any five questions.

- (a) science. processing in the field of medical State the applications of image
- (b) following image processing tasks: Describe briefly the utility of the
- (i) Image enhancement
- (ii) Image segmentation
- (iii) Image registration

- (iv) Image compression
- (v) Feature extraction.
- (c) Explain briefly with diagram, how a color image is formed with a digital camera.
 (a) Write mathematical equation of I-D
- 2. (a) Write mathematical equation of I-D convolution and cross-correlation. How can they be related?

 (b) A sequence v(x) = [1.9.0.3] is convolved.
- (b) A sequence x(n) = [1203] is convolved with y(n) = [2034]. Find convolution and correlation between them. 4+4
- (c) An image of size 128×128 is convolved with a 5×5 kernel. What will be the size of the image after convolution?
- (d) Write the generalised expression of 2D image transform. Explain its complexity. Discuss how the complexities can be reduced using separability of the kernel. 1+3

3. (a) Perform ID FFT and find x(0), x(1), x(4), x(5) for the following sequence:

4x2

x(n) = [10230214].

(b) Define 8x8 kernel of W-H transform when 2x2 kernel is given:

$$H_2 = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

using this 2x2 kernel perform 2D image

transform of
$$x(n) = \begin{bmatrix} 2 & 3 \\ 4 & 6 \end{bmatrix}$$
.

Hint: $F = f.H.f^T$

- 2+3
- (c) Write down the forward and inverse kernel for the following transformation for 2D image transform: 2+2
- (i) DCT
- (ii) DHT
- (d) Discuss benefits of DCT over other transformations.

- 0 State the differences between spatial with suitable examples. and intensity transformation. Explain
- 6 A gray level 3-bit image historgram is given below:

1								1
Gray level:	0	1	2	.03	4	51	6	V
Frequency :	400	700	1350	2500	3000	1500	550	0

equalization. and find out the kernel histogram after Apply histogram equalization technique

0 Frame a suitable mask for the following image operation : 2+2+3+2

$$0 \frac{\partial^2 f(x,y)}{\partial x \cdot \partial y}$$

(ii)
$$\frac{\partial^2 f(x,y)}{\partial x^2} + \frac{\partial^2 f(x,y)}{\partial y^2}$$

- (iii) An edge enhancer
- (iv) A low pass filter
- Çī (a) What is motion blur? Mathematically degradation function model motion blur and derive its

- (6) is derived. how the transfer function of that filter Is it possible to use winner filter for reconstructing blurred image? Explain
- @ Differentiate between lossless and lossy image compression techniques.
- (b) Match the following (i) MPEG-4

5×1

Fax

JPEG

DCT

- Run-length coding Lossless coding
- Huffman coding Video coding standard
- Predictive coding DPCM

0

- Why DCT is preferrable over DFT in image compression technique. steps with block diagram for JPEG image compression? State different 2+10
- 7. Write short notes on : (any two) 10x2
- K-L transform
- (6) Homomorphic filtering
- 0 Run-length coding
- Histogram specification.

OI

53 (EC 714) DIPR/G