53 (IT 603) CPDG

2018

COMPILER DESIGN

Paper: IT 603

Full Marks: 100

Time : Three hours

The figures in the margin indicate full marks for the questions.

Answer any five questions.

- (a) Explain Explain the input buffering strategy, used in the lexical analysis phase.
- 6 operator language)? recognize Draw the transition diagram the token relop (relational 01
- (0) compilation will operate on the following explain how different statement: various Explain with a neat diagram, phases of a compiler and phases the

Position = initial + rate * 60,

assuming datatype of rate is float

2. (a) Draw the DAG for the following expression:

$$a+a*(b-c)+(b-c)*d$$

also translate the above expression into 3-address code, quaduples and triples.

4+6

(b) Differentiate between L-attributed and S-attributed grammar. 6

- (c) What do you mean by boot strapping process? What is the advantage of using this process? 2+2
- (a) Define the following term:
 Lexeme, Lexical analyze and Token.
- (b) Compute the FIRST() and FOLLOW() Symbols for the following grammar:
- $E \to TE'$ $E' \to +TE' \mid \varepsilon$ $T \to FT'$ $T' \to *FT' \mid \varepsilon$ $F \to (E) \mid id$
- (c) Define LL(1) Grammar. Under what conditions a grammar is called LL(1)? Check whether the above grammar (question no. 3(a) is LL(1) or not.

4. (a) Obtain the set of canonical LR(0) items for the grammar:

$$S \to L = R$$
$$S \to R$$

$$L \rightarrow *R$$

$$L \rightarrow id$$
 $R \rightarrow L$

Is the grammar is SLR (1) or not? Give reasons.

(b) What is handle pruning? Explain with the help of the grammar 2+4

$$S \rightarrow SS + |S*S|a$$

and input string aa+*aa+.

- (c) Explain in detail different storage allocation strategies.
- 5. (a) Construct a SLR(1) parsing table for the following grammar: 8

$$S \rightarrow xAy \mid xBy \mid xAz$$

 $A \rightarrow aS$
 $B \rightarrow q$

(b) Show with the help of an example "no left recursive grammar can be LL(1)".

N

ω

0 Make left and right most derivation to derive a statement w, where using top-down and bottom-up strategy

grammar: w = id + (id + id) * id using the following $E \rightarrow E * E$ $E \rightarrow E + E$

$$E \to E + E$$

$$E \to E * E$$

$$E \to (E)$$

$$E \to id$$

check whether grammar is ambiguous

(a) What do you mean by left factoring? factoring the following grammar? What is the use in parsing? Do the left

$$E \to 5 + T | 3 - T$$

$$T \to V | V * V | V + V$$

$$V \to a | b$$

6 the following grammar reduce (SR) parsing is done considering Explain how stack implementation of shift 2+2+4

$$E \rightarrow E + E$$

$$E \rightarrow E * E$$

$$E \to (E)$$

the input string is id + (id) + id * id

- 0 What is syntax-directed translation and why is this important? 2+2
- (a) Consider the following grammar and Consider the augmented grammar G' construct the LALR parsing table SYLS

$$S \rightarrow aAd \mid bBd \mid aBC \mid bAc$$
 $A \rightarrow C$

$$A \rightarrow C$$

 $B \rightarrow cb$

 $B \rightarrow cb$ advantages 10

- (b) What are the disadvantages technique? of LALR parsing and
- (0) Construct the transition diagram for the following regular expression 3+3

(ii) (a | b) abbb

S