53 (EC 603) DSPR

2018

DIGITAL SIGNAL PROCESSING

Paper: EC 603

Full Marks: 100

Time: Three hours

full marks for the questions. figures in the margin indicate

Answer any five questions.

- analog frequency and digital frequency. Establish the relationship between
- (b) Consider the system BIBO shown below. For what values the discrete-time system stable of 'K' is

Contd.

 Determine the output sequence of the system with impulse response

 $h(n) = \left(\frac{1}{2}\right)^n u(n)$, when the input is the complex exponential sequence $x(n) = 4 \exp(j\pi n/2)$; $-\infty < n < \infty$. Deduce the necessary theory.

- (a) If a discrete-time LTI system is BIBO stable, show that the ROC of its system function H(z) must contain the unit circle, i.e. |z|=1.
- (b) Find the circular convolution of the two sequences: $x(n) = \{1, -2, 4, 1.5\}$ and $h(n) = \{3, 0, -2, 5\}$ using graphical method.
- 4. (a) An FIR filter (N=11) is characterised by the following transfer function:

$$H(z) = \sum_{n=0}^{N-1} h(n) z^{-n}$$

Determine the magnitude response and hence prove that the phase and the group delays are constant (independent of frequency).

- b) Design a single-pole low-pass digital filter with a 3dB bandwidth of 0.2π using Bilinear transformation. The corresponding analog filter has a system response given by $H(s) = \Omega c/(s + \Omega c)$; where ' Ωc ' is the 3dB bandwidth of the analog filter.
- 5. Find the impulse response h(n) for each of the causal, discrete-time LTI systems satisfying the following difference equations and also indicate the type of the system (FIR or IIR):

(i)
$$y(n) = x(n) - 2x(n-2) + x(n-3)$$

ii)
$$y(n)+2y(n-1)=x(n)+x(n-1)$$

ii)
$$y(n) - 0.5y(n-2) = 2x(n) - x(n-2)$$

53 (EC 603) DSPR/G

w

Show that analog transfer function

$$Ha(s) = \frac{b.s}{s^2 + bs + \Omega_0^2}; b > 0$$

unity has a band-pass magnitude response with $|Ha(j0)| = |Ha(j\infty)| = 0$ and $|Ha(j\Omega_0)|$ is

value of 0dB at Ω_0 . Show that Ω_1 , $\Omega_2 = \Omega_0^2$. at which the gain is 3dB below the maximum Also determine the frequencies Ω_1 and Ω_2

function. bandwidth of the bandpass show that $b = \Omega_2 - \Omega_1$; which is the 10+4+3+3 transfer