53 (EC 601) MWEN

2018

MICROWAVE ENGINEERING

Paper: EC 601

Full Marks: 100

Time: Three hours

full marks for the questions. figures in the margin indicate

Answer any five questions:

5×20=100

- (a) Starting from Maxwell's equation derive rectangular waveguide for TEmn mode. the electromagnetic field equations in
- A rectangular for the dominant mode. constant β at signal wavelength 4.5cm wavelength λ_g , phase velocity v_p , phase section 2.5×5cm2. Determine the guide waveguide has cross-

Contd.

2. (a) Show that for a rectangular waveguide the free space wavelength λ of a wave is related to guide wavelength λg as

 $\lambda = \frac{\lambda_g \ \lambda_c}{\sqrt{{\lambda_g}^2 + {\lambda_c}^2}}$, where λ_c is the cut-off wavelength.

- (b) A rectangular waveguide has the following characteristics: b=1.5cm, a=3.0cm $\mu_r=1$ and $\epsilon_r=2.25$.
- (i) Calculate the cut-off wavelength and cut-off frequency for ${\rm TE}_{10}$, ${\rm TE}_{20}$ and ${\rm TM}_{11}$ modes.
- Calculated λ_g and z_o at 4.0GHz. 8+12
- (a) Derive an expression for the resonant cavity $(a \times b \times l)$ with a > b > l and hence obtain the dominant mode of resonance.
- (b) Define 'Q' factor of a cavity. Distinguish between 'loaded Q' and 'unloaded-Q' of the cavity.
- (c) Describe critical coupling, overcoupling and undercoupling. Draw the variation of VSWR with coupling co-efficient.

- 1. (a) Discuss the working principle of a 'Magic-T'.
- (b) Obtain the Scattering matrix equation of a 'Magic-T' by using necessary properties of the Scattering matrix.
- (c) Explain why 'Scattering Matrix' representation of a Microwave network is preferred over z-matrix or y-matrix.
- (a) Describe the ideal 'Directional Coupler'.
 Define 'Coupling' and 'Directivity' in the context of a directional coupler.
- (b) Mention the practical shortcomings of a such a directional coupler. Discuss how these shortcomings can be overcome.
- (c) Explain with neat sketch the working principle of Faraday Isolator. 6+4+10
- (a) Explain the working principle of a Reflex Klystron Oscillator.
- (b) Explain what is meant by 'velocity modulation' and how this phenomenon is used in the Operation of a Klystron tube.

N

w

- 0 frequency Draw the power vs repeller voltage and characteristics of a Reflex Klystron. Explain qualitatively. US repeller vortage
- (a) related to the phase velocity v_p as Show that the group velocity v_g

$$v_g = v_p \sqrt{1 - (f_c / f)^2}$$

magnetic field component is given as waveguide has $\sigma = 0$, $\mu = \mu_0$, $\epsilon = \epsilon_0$. The 1.5cm×0.8cm. The medium inside the waveguide has a cross-section

$$H_{x} = 2\sin\left(\frac{\pi x}{a}\right)\cos\left(\frac{3\pi y}{b}\right)\sin\left(\pi \times 10^{11}t - \beta z\right)$$

Determine:

- (i) the mode of operation
- (ii) the cut-off frequency
- (iii) the phase constant β
- (iv) the propagation constant y
- (v) the wave impedance Z_g .

6+14