2018

ENVIRONMENTAL ENGINEERING-II

Paper: CE 602

Full Marks: 100

Time: Three hours

The figures in the margin indicate full marks for the questions.

Answer any five questions out of six.

(a) Define the following:

00

- (i) Sanitation
- (ii) Domestic sewage
- (iii) Industrial sewage
- (iv) Sanitary sewage.

(b) The drainage area of one sector of a of the surface of this area is as follows: town is 15 hectares. The classification

% of total	Type of	Co-efficient of
surface area	surface	run off
20%	Hard Pavement	0.85
20%	Roof Surface	0.80
20%	Unpaved Street	0.20
30%	Garden	0.20
10%	Wooden area	0.15

off. Use the formula, is 30 minutes, find the maximum run If the time of concentration for the area

$$R = \frac{900}{t + 60}$$

- 2 (a) 5 day 20°C BOD of an industrial waste of that waste. Assume K_D at 20°C as is 200 mg/L. Calculate 1 day 37°C BOD
- (b) Distinguish clearly following bacteria: between the
- Aerobic bacteria

- Anaerobic bacteria and
- Facultative bacteria
- (0) Explain the term 'BOD' and describe briefly how it is determined
- (d) Explain the following terms

OI

- Population Equivalent
- Nitrogen Cycle in the decomposition of sewage.
- (a) as 2.5 hrs. and surface loading as million litres per day. Assume detention a primary treatment of sewage at 12 Design a circular settling tank unit for $40,000 \text{ litres}/m^2/\text{day}$.
- (b) A waste water effluent of 560 L/sec water in the river downstream is is 0.10 per day at 20°C. The velocity of where the flow is $28 \, m^3 / sec$ and and temperature of 23°C enters a river with a BOD = 50 mg/L, DO = 30 mg/LWW with the river water: $0.18 \, m/s$ and depth of $1.2 \, m$. temperature of 17°C. K_D of the waste BOD = 4.0 mg/L, DO = 8.2 mg/L and Determine the following after mixing of
- Combined discharge

53 (CE 602) EVEN/G

w

-			
Exp	(iv)	(iii)	(ii)
Explain briefly the zones of pollution	(iv) Temperature.	(iii) DO STEELING SYLESTILIDAY (iii)	(ii) BOD Side Side Side (ii)
2 4	00		

3

0

4

- Design necessary data. litres per head The rate of from a small town with an Imhoff tank to treat the sewage may be assumed as per day. Assume the 40,000 population. sewage 150
- Determine the size of running half full. for a discharge of 600 litres per second a circular sewer
- n=0.015. pm 08 = 008 s diw Assume bed slope = 0.0001 and
- (b) Write short notes on:
- (i) Testing of new sewers
- (ii) Sewer types.
- and indicate where Draw a neat sketch # of a drop manhole is used.
- 6 ij. Explain in order the various stages followed the construction of sewer.

4