53 (FPT 504) MDPE

2018

MECHANICAL DESIGN OF PROCESS EQUIPMENT

Paper: FPT 504

Full Marks: 100

Time: Three hours

The figures in the margin indicate full marks for the questions.

Answer question no. 1 and any four from the rest.

1.	(a)	Fill	in the blanks : $1\frac{1}{2} \times 10 = 15$
		(i)	A machine is a device which transforms available energy into some
		(ii)	Variable cost are the costs, which are of rate of production.
			In break-even point, there is

- (iv) In stress-strain diagram, strain is represented on _____ axis.
- (vi) _____ is defined as the ability of the material to absorb energy before fracture takes place.
- (vii) Youngs modulus, E =
- (viii) Angle of twist, $\theta = \frac{\dots}{\dots}$
- (ix) Factor of safety, FoS =
- (x) For brittle materials, allowable stress, $\sigma = \frac{1}{2}$.
- (b) True or False:

1x5

(i) The relation between modulus of elasticity, the modulus of rigidity and Poisson's ratio is given by $E = 2G(1 + \mu)$.

- Non-recurring costs are directly related to manufacture of the product.
 - Permissible shear stress, $\tau = \frac{S_{sy}}{\text{FoS}}$ S_{sy} = Yield stress, FoS = Factor of safety.
 - (iv) In Cotter joint, for the purpose of stress analysis, it is assumed that the rods are subjected to compressive force.
- Polar moment of inertia of a solid circular bar of diameter 'd' is given by $J = \frac{\pi d^4}{32}$.
- 2.01 (a) What is Machine Design? What are the basic requirements of machine OS=3x1 elements? Discuss. 2+8
 - (b) What is BEP? Explain with suitable diagram. What are the different types of cost involved in Machine Design?

- 3. (a) What is shear stress and shear strain?
 Discuiss with diagram. 5+5
 - (b) A rod 150cm long and of diameter 2cm is subjected to an axial pull of 20kN. If the modulus of elasticity of the material of the rod is 2×10⁵N/mm²; determine :
 - (i) the stress
 - (ii) the strain
 - (iii) the elongation of the rod.

3+3+4

53 (PPT 5847 MINE)

- (a) What is stress-strain diagram? Explain with diagram. What are the properties that can be obtained from the test?
 Explain.
 5+5
 - (b) What are the basic procedure of Machine Design ? Explain.
- 5. Write short notes on : (any four) 4×5=20
 - (a) Elastic limit
 - (b) Classification of pressure vessel
 - (c) Factor of safety

- (d) Double Pipe Heat Exchanger (DPHE)
- (e) Hooke's law
- (f) Bending stress.
- 6. It is required to design a Cotter joint to connect two steel rods of equal diameter. Each rod is subjected to an axial tensile force of 50kN. Design the joint and specify its main dimensions. [use plain carbon steel of grade 3068 ($S_{y\pi} = 400 N/mm^2$)] 20
- (a) What is joint efficiency factor? Discuss different types of joint. 3+7=10
 - (b) A hollow shaft is required to transmit 450kW power at 120rpm. The maximum torque is 30% greater than the mean torque. The shaft is made of plain carbon steel 45C8 ($S_{y\pi} = 380N/mm^2$) and the factor of safety is 3. The shaft should not twist more than 1.5° in a length of 3m. The internal diameter of the shaft is 3/8 times of external diameter. The modulus of rigidity of shaft material is $80kN/mm^2$. Determine the external diameter of the shaft on the basis of its shear strength and on the basis of permissible angle of twist.

5