53 (EC 501) ELMW

2018

ELECTROMAGNETIC WAVES

Paper: EC 501

Full Marks: 100

Time: Three hours

The figures in the margin indicate full marks for the questions.

Answer any five questions.

- 1. Given point P(-2,6,3) and a Vector $A = ya_x + (x+z)a_y$, express P and A in cylindrical and spherical co-ordinates. Evaluate A at P in the Cartesian and Spherical systems.
- (a) Prove that the electric field at a point
 (r>a) due to a uniformly charged
 sphere of radius 'a' is the same as the
 whole charge is located at the centre of
 the sphere.

- (b) A circular disc of radius 'a' uniformly charged with $P_s(c/m^2)$. If the disk lies on the z=0 plane with its axis along the 'z' axis.
 - (i) Show that at point (0, 0, h)

$$E = \frac{P_s}{2 \in_0} \left[1 - \frac{h}{\left\{ h^2 + a^2 \right\}^{\frac{1}{2}}} \right] a_z$$

- (ii) From this derive the 'E' field due to an infinite sheet of charge on the z=0 plane.
- (iii) If a << h, show that E is similar to the field due to a point charge.</p>
 9+11
- (a) What is meant by the Uniform Plane Wave? Derive the wave equation in terms of electric and magnetic fields.
 - (b) Derive Poynting theorem and explain clearly every terms. Calculate power flow for a plane wave. 3+7+4+6
- 4. (a) Derive an expression for the input impedance Z_{in} of a lossless transmission line, in terms of relevant parameters, when the line is terminated into impedance Z_L .

- (b) Show that for a lossless transmission line the input impedance of a line repeat over every $\lambda/2$ distance.
- (c) At a frequency of 80MHz, a lossless transmission line has a characteristic impedance of 300Ω and a wavelength of 2.5m. Find the value of L and C. 8+5+7
- 5. (a) What does a lossless and distortionless line mean?
 - (b) Derive the necessary condition for a transmission line to become distortionless line.
 - (c) Prove that a distortion line is not necessarily a lossless line but a lossless line is a distortionless line.
 - (d) An air line has characteristic impedance of 70Ω and phase constant 3 rad/m at 100MHz. Calculate the inductance per meter and the capacitance per meter of the line.

4+8+3+5

 (a) Establish the boundary conditions for electric and magnetic field intensities and the interference between to dielectric media.

- (b) Explain how these conditions will be modified, if one of the media is a perfect conductor.
- (c) If X < 0 defines region 1 and X > 0 defines region 2, then find the electric field intensity in region 2 ($\epsilon_r = 5$), if the electric field intensity in region 1 ($\epsilon_r = 1$) is $\vec{E}_1 = (4\hat{u}_x + 1.5\hat{u}_y 2\hat{u}_z)V/m$.

7+6+7

- 7. Write short notes on: (any four) 4×5=20
 - (i) Skin depth
 - (ii) Ampere's Circuital law
 - (iii) Smith chart
 - (iv) Poynting theorem
 - (v) Conduction and Convection current.