53 (CE 502) TREN-I

2018

TRANSPORTATION ENGG.-I

Paper: CE 502

Full Marks: 100

Time : Three hours

The figures in the margin indicate full marks for the questions.

Answer all questions.

1. (a) Three new roads P, Q, R are planned in a district. The data for these roads are given in the table below: 5

Road	Length (km)	Number of Villag		_
	oge min spo	<2000	2000-5000	>5000
P	20	8	6	1
Q	18	19	8	4
R	12	7	5	2

Based on the principle of maximum utility what is the order of priority for these three roads.

- (b) Calculate the safe stopping sight distance for design speed of 50km/hr. for -
 - Two way traffic on a two lane road
 - Two way traffic on a single lane road Assume coefficient of friction = 0.37.
- Calculate the values of -
 - Head light sight distance
 - Intermediate sight distance for a highway with a design speed of 65kmph. Assume suitably all the data required.
- The driver of a vehicle travelling 60km/hr up a gradient requires 9m less to stop after he applies brakes, as compared to a driver travelling at same speed, down the same gradient.

What is the present gradient if coefficient of friction is 0.4?

On a two way traffic road, the speed of overtaking vehicles are 65kmph and 40kmph. If the average acceleration is 0.92m/sec2. Determine the overtaking sight distance indicating the details of overtaking operations.

Show the minimum length of overtaking zone and details of overtaking zone by a neat sketch.

- (b) On a horizontal highway curve, derive the condition for -
 - No overturning
 - (ii) No skidding.
 - A highway is provided with a horizontal curve of radius 300m. Calculate super elevation required to maintain a design speed of 90kmph.

Calculate the maximum allowable speed if super elevation is limited to 0.07 and safe limit of transverse friction is 0.15.

- (a) A expressway of four lanes, passing through a flat terrain has a horizontal curve of radius equal to ruling minimum radius. If the design speed is 120kmph. Calculate —
 - Ruling minimum radius (i)
 - (ii) Super elevation
 - (iii) Extra widening
 - (iv) Length of transition curve.
 - Calculate the set back distance from the inner edge of the curve in a four lane carriageway, the length being 1500m. The stopping sight distance is 250m. The radius of curve is 400m.

(c) Calculate the length of summit curve for a stopping sight distance of 180m, on a national highway at the junction of an upward gradient of 1 in 200 and a downward gradient of 1 in 200.

> Assume the height of the driver eye level to be 1.2m and height of object above roadway to be 0.15m.

(a) Load and penetration values from a CBR test are given below: Calculate the CBR value.

Load (kg)	Penetration (mm)		
0	0		
7	0.5		
24	1.0		
41 10000	1.5		
59	2.0		
70	2.5		
81	3		
98	also steam 4 hards		
110	5		
129	7.5		

(b) Plate bearing test conducted on a 30cm dia plate yielded the following observations:

Load (kg)	Settlement (mm)	
270	0.25	
580	0.5	
770	0.75	
1010	1.00	
1260	1.25	
1480	1.50	
1690	1.75	

Determined 'K' value corresponding to a plate of 75cm diameter.

- (c) Determine the average skid resistance of the pavement surface. During a braking test, a vehicle travelling at a speed of 35kmph was stopped by applying brakes fully and
 - Skid marks were 5.8m in length
- (b) Vehicle stopped within 2sec after application of break
 - Vehicle stopped within 1.5sec and skid marks observed was 7.0m long.

53 (CE 502) TREN-I/G

- 5. (a) The speed density relationship for a particular road was found to be v = 42.76-0.22k, where 'v' is the speed in km/hr and k is the density in vehicle per km. Find jam density at maximum capacity. Sketch the relationship between density and flow and indicate important traffic flow parameters on it.
 - (b) A vehicle applies brakes and skids through a distance 40m, before colliding with another parked vehicle, the weight of which is 60% of former. Compute the critical speed of moving vehicle if distance travelled by both vehicle after collision is 12m before stopping. Take coefficient of friction as 0.6.
 - (c) The number of commercial vehicles per day at present count is 6000. Design life is 15yrs. Traffic growth rate is 8%.
 VDF = 4.5. Lateral distribution factor for 6 lane divided highway = 0.6.
 Calculate the number of standard axles in the design life if the construction period is 2 years.

(d) Compute the radius of relative stiffness of 15cm thick cement concrete slab from the following data:
Modulus of elasticity of cement concrete

Modulus of elasticity of cement concrete = 210000kg/cm²

Poisson's ratio for concrete = 0.13 Modulus of subgrade reaction $k = 7.5 kg/cm^3$.

5