53 (MA 401) NMCP

2018

NUMERICAL METHODS AND COMPUTER PROGRAMMING

Paper: MA 401

Full Marks: 100

Time: Three hours

The figures in the margin indicate full marks for the questions.

Answer any five questions.

- (a) Find a real root of x⁴ x = 10, correct to five decimal places by using Newton-Raphson method.
 - (b) Prove that $\frac{E-1}{E} = \Delta$, where E is shift operator and Δ is forward difference operator.

- (c) Using improve Euler method, find a solution of the equation $\frac{dy}{dx} = y + x^2$, with initial condition y = 1 at x = 0 for the range $0 \le x \le 1$ in steps of 0.2.
- 2. (a) Using Bisection method, find a real root of $x^3 3x + 1.06 = 0$ to correct upto three decimal places.
 - (b) For a given function $f(x) = x^3$ and $\delta x = 0.2$ taking five decimal places obtain the absolute errors in f'(x) and f''(x) at x = 3.
 - (c) Using modified Euler method, find y at x = 0.1 and x = 0.2 given that $\frac{dy}{dx} = y \frac{2x}{y}$, y(0) = 1 with correct result upto four places of decimals.

- 3. (a) Using Regula-Falsi method, find the real root of $xe^x 2x + 1 = 0$ correct to three decimal places.
 - (b) Using three points Gaussian quadrature formula, evaluate $\int_{0}^{1} \frac{dx}{1+x}$.
 - (c) By using Least Square method, fit a second degree parabola $y = a + bx + cx^2$ to the following data:

x	:	1	2	3	4	5	6	7
y	:	1.8	1.3	2.1	1.2	1.5	2.5	6.3

4. (a) Using Iteration method, find a real root of $3x - log_{10}(x) - 16 = 0$ correct to fourth decimal places.

is lating the but a

(b) Integrate $\int_{1}^{2} \frac{dx}{x}$ by calculus and by Simpson's formula taking eight division and compute $\log 2$.

3

(c) Solve the following equations by Gauss Seidel equation method correct upto four decimal places:

$$7x_1 + 52x_2 + 13x_3 = 104$$
;

$$8x_1 + 11x_2 - 4x_3 = 95$$
;

$$3x_1 + 8x_2 + 29x_3 = 71.$$

9

- 5. (a) Using Runge-Kutta method of fourth order, solve $\frac{dy}{dx} = xy + y^2$ with y(0) = 1 at x = 0.1, 0.2, 0.3.
 - (b) Compute f'(0.1) from the following data:

x :	0	1.	2	3	4
f(x):	1	0	1	10	33

6. (a) Solve $\frac{dy}{dx} = \frac{1}{2}(1+x)y^2$ with y(0) = 1 at x = 0.2, 0.4, 0.6 by Euler method and hence find y(0.8) by Milne's method.

(b) Using Gauss elimination method solve —

$$2x+y+4z = 12$$

 $8x-3y+2z = 20$
 $4x+11y-z = 33$

(c) Apply Lagrange's formula to find f(5) from the following data:

x		1	2	3	4	7
f(x) :	2	4	8	16	128

- 7. (a) What do you mean by error ? Find the absolute error and relative error if the number x = 0.004997 is round off to three decimal places.
 - (b) Using Newton's Interpolation formula evaluate f(3.8) from the following data:

6

x :	0	1	2	3	4
f(x):	1	1.5	2.2	3.1	4.3

(c) The pressure and the volume of a gas are related by the equation $pV^{\gamma} = k$; γ and k being constants. Fit the equation to the following set of observations:

10

$p (kg/cm^2)$:						
V (litres) :	1.62	1.00	0.75	0.62	0.52	0.46

granta the cond