53 (IE 401) ELMC

2018

ELECTRICAL MACHINES

Paper: IE 401

Full Marks: 100

Time: Three hours

full marks for the questions. figures in the margin indicate

Answer any five questions.

- (a) generator. Derive the emf. equation of DC
- (6) their voltage equations. and series generators and also write Draw the neat circuit diagrams of shunt

- (c) A shunt generator delivers 195A at a terminal p.d. of 250V. The armature resistance and shunt field resistance are 0.02\(\text{Q}\) and 50\(\text{Q}\) respectively. The iron and friction losses equal 950W. Find —
- (i) emf. generated
- (ii) Cu-loss
- (iii) output of the prime mover
- (iv) mechanical, electrical and commercial efficiencies.
- (a) What do you mean by back-emf. of a DC motor and why starter is required to start a DC motor?

2

- (b) With a neat diagram, show the power stages of a DC motor and find the overall, electrical and mechanical efficiencies.
- (c) A 220V shunt motor takes a total current of 80A and runs at 800 pm. Shunt field resistance and armature resistances are 50 Ω and 0·1Ω respectively. If iron and frictional losses amount to 1600 W, find —

- (i) copper losses
- ii) armature torque
- (iii) shaft torque
- (iν) efficiency.
- does it differ from practical transformer?
- (b) A transformer takes a current of 0.6A and absorbs 64 W when primary is connected to its normal supply of 200 V, 50 Hz; the secondary is open. Find the magnetising and iron loss currents.
- (c) A 4 kVA, 200/400V, 50 Hz, 1-φ transformer gave the following test results—

No-load test: 200V, 0.7A, 60W (LV Side)

Short circuit test: 9V, 6A, 21.6W (HV Side)

Calculate -

(i) the magnetising current and the component corresponding to iron loss at normal frequency and voltage

10

w

- (ii) the efficiency on full-load at unity p.f.
- (iii) the secondary terminal voltage on full-load at p.f. 0.8 leading.
- 4. (a) How the speed of a three phase induction motor can be controlled?

 Write briefly.
- (b) Briefly write about the star-delta starting of three phase induction motor.
 5
- (c) An 8-pole, 3 φ, 50 Hz induction motor running with a slip of 4% is taking 20 kW. Stator losses amount to 0.5 kW. If the mechanical torque lost in friction is 16.25 N-m, find (i) BHP, (ii) efficiency.
- 5. (a) Derive the emf. equation of an alternator.
- (b) Draw the equivalent circuit of a loaded alternator with a phasor diagram. 5

- (c) A 1500 kVA, 6·6 kV, 3-φ starconnected alternator has effective armature resistance of 0·5Ω/ph. and a synchronous reactance of 5Ω/ph. Find the percentage change in terminal voltage when the rated output of 1500 kVA at —
- (i) Unity power factor
- (ii) 0.8 power factor lagging is switched off.

The speed and excitation current remain unchange.

- (a) Write the operating characteristics and some important applications of universal motors.
- (b) With a neat circuit and a phasor diagram, briefly explain the operation of split-phase induction motor. 5
- (c) Briefly explain the Double-Field revolving theory.
- 7. (a) Explain the torque-slip characteristics of a 3-\phi induction motor. 5

- secondary sides. voltage equations for primary and loaded transformer and write Draw the exact equivalent circuit of a the
- A 40 kVA transformer has iron loss of 450 W and full-load copper loss of 850 W. If the power factor of the load is 0.8 lagging, calculate
- (i) full-load efficiency
- (ii) the efficiency occurs and kVA load at which maximum
- (iii) the maximum efficiency.