53 (FPT 403) TPEN

2018

TRANSFER PROCESS ENGINEERING

Paper: FPT 403

Full Marks: 100

Time: Three hours

full marks for the questions. figures in the margin indicate

Answer any five questions out of seven

5+6+2+4+3=20

- 0 Write Fick's first law of diffusion
- 0 transfer? What is diffusive and convective mass
- 0 and liquid. Write diffusivity range of solute in gas
- (B) and molecular weight? How diffusivity of solute changes with pressure, temperature, molecular size

(e) What are SI units of Flux, diffusion coefficient, mass transfer coefficient?

5+9+6=20

2

- (a) Write Fourier's law of heat conduction.
- (b) What is conductive, convective and radiative heat transfer process?
- (c) Calculate heat loss per m² of surface area for an insulating wall made of 25.4 mm thick insulation where inside temperature is 352.7K and outside temperature is 297.1K.

 Thermal conductivity of insulation is 0.048W/mK.

6+8+6=20

S

- (a) What is log mean temperature difference?
- (b) Why it is relevant to heat exchanger?
 Discuss.
- (c) Write Newton's law of viscosity and define all the terms.

4. Discuss briefly about the following unit operation: 5x4=20

Absorption

Distillation

Adsorption

Liquid-liquid extraction

Leaching.

- 5. Write about interphase mass transfer assuming two-film model and equilibrium at the interphase. Discuss with equilibrium plot to derive overall mass transfer coefficients.
- 6. It is desired to absorb 90% solute in a gas phase containing $1 \, mol \, \%$ solute in a countercurrent stage tower. The total inlet gas flow to the tower is $30 \, kg \, mol / h$, total inlet pure liquid to be used to absorb the solute is $90 \, kg \, mol \, liquid / h$. The process is isothermal at $300 \, K$ and pressure $101 \cdot 3 \, kPa$. The equilibrium relation for the solute in the gas-liquid is $Y_A = 2.53 \, X_A$. Determine the number of theoretical stages required for separation.

10

- 0 Discuss any mass transfer model
- is At initial point 1, concentration of solute constant cross-sectional area. is $0.013m^2/s$ and diffusion is through two points is 0.4m. Diffusion coefficient diffusion through a fluid at steady state. A molecule is being transported by 0.72×10^{-2} g/m³. The distance between $1.37 \times 10^{-2} g/m^3$ and at final point the concentration of solute is

concentration of solute at the Calculate molecular flux. Calculate middle