53 (CE 403) GTEN

2018

GEOTECHNICAL ENGG.

Paper: CE 403

Full Marks: 100

Time: Three hours

The figures in the margin indicate full marks for the questions.

Answer all questions.

1. (a) Define the following:

(i) Alluvial deposit

(ii) Lacustrine deposit

(iii) Marine deposit

(iv) Aeolian deposit

(v) Glacial deposit.

- (b) Explain the following: 10
 - (i) Two-phase soil system
 - (ii) Three-phase soil system.
- (c) Derive the following: 5
 - (i) $n = \frac{e}{1+e}$
 - (ii) $W_s = \frac{W}{1+w}.$
- 2. (a) Explain the following: 5×2=10
 - (i) Water content determination of soil using Oven Drying Method
 - (ii) Specific gravity determination of soil solids using Pycnometer.
 - (b) Explain the in-situ unit weight determination of soil using: 5×2=10
 - (i) Care Cutter method
 - (ii) Sand Replacement method.
- 3. (a) Explain the procedure to determine: 5×2=10
 - (i) Liquid limit
 - (ii) Plastic limit.

- (b) Give the symbols for the following soils: 1×5=5
 - (i) Sand
 - (ii) Clay
 - (iii) Silt
 - (iv) Organic Soil
 - (v) Peat.
- (c) On what factors does the soil compaction depends?
- 4. (a) Explain the following tests: 5×2=10
 - (i) Constant head test for determining permeability
 - (ii) Consolidometer test.
 - (b) What are the features of flownets? 5
 - (c) Derive the expression to determine primary consolidation settlement. 5
- 5. (a) What do you understand by the terms: $2 \times 5 = 10$
 - (i) Effective stress
 - (ii) Pore water pressure
 - (iii) Degree of Saturation

3

- (iv) Coefficient of Consolidation
 - (v) Well-graded soil?
- (b) Explain the Compaction curve for clayey soil?
- (c) Give the difference between Compaction and Consolidation.
 5